A coupled VOF/embedded boundary method to model two-phase flows on arbitrary solid surfaces

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-05-23 DOI:10.1016/j.compfluid.2024.106317
Mathilde Tavares , Christophe Josserand , Alexandre Limare , José Ma Lopez-Herrera , Stéphane Popinet
{"title":"A coupled VOF/embedded boundary method to model two-phase flows on arbitrary solid surfaces","authors":"Mathilde Tavares ,&nbsp;Christophe Josserand ,&nbsp;Alexandre Limare ,&nbsp;José Ma Lopez-Herrera ,&nbsp;Stéphane Popinet","doi":"10.1016/j.compfluid.2024.106317","DOIUrl":null,"url":null,"abstract":"<div><p>We present an hybrid VOF/embedded boundary method allowing to model two-phase flows in presence of solids with arbitrary shapes. The method relies on the coupling of existing methods: a geometric Volume of fluid (VOF) method to tackle the two-phase flow and an embedded boundary method to sharply resolve arbitrary solid geometries. Coupling these approaches consistently is not trivial and we present in detail a quad/octree spatial discretization for solving the corresponding partial differential equations. Modelling contact angle dynamics is a complex physical and numerical problem. We present a Navier-slip boundary condition compatible with the present cut cell method, validated through a Taylor–Couette test case. To impose the boundary condition when the fluid–fluid interface intersects a solid surface, a geometrical contact angle approach is developed. Our method is validated for several test cases including the spreading of a droplet on a cylinder, and the equilibrium shape of a droplet on a flat or tilted plane in 2D and 3D. The temporal evolution and convergence of the droplet spreading on a flat plane is also discussed for the moving contact line given the boundary condition (Dirichlet or Navier) used. The ability of our numerical methodology to resolve contact line statics and dynamics for different solid geometries is thus demonstrated.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004579302400149X/pdfft?md5=3d711d97bc82cf2b66be0aa6d19ce2c3&pid=1-s2.0-S004579302400149X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400149X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an hybrid VOF/embedded boundary method allowing to model two-phase flows in presence of solids with arbitrary shapes. The method relies on the coupling of existing methods: a geometric Volume of fluid (VOF) method to tackle the two-phase flow and an embedded boundary method to sharply resolve arbitrary solid geometries. Coupling these approaches consistently is not trivial and we present in detail a quad/octree spatial discretization for solving the corresponding partial differential equations. Modelling contact angle dynamics is a complex physical and numerical problem. We present a Navier-slip boundary condition compatible with the present cut cell method, validated through a Taylor–Couette test case. To impose the boundary condition when the fluid–fluid interface intersects a solid surface, a geometrical contact angle approach is developed. Our method is validated for several test cases including the spreading of a droplet on a cylinder, and the equilibrium shape of a droplet on a flat or tilted plane in 2D and 3D. The temporal evolution and convergence of the droplet spreading on a flat plane is also discussed for the moving contact line given the boundary condition (Dirichlet or Navier) used. The ability of our numerical methodology to resolve contact line statics and dynamics for different solid geometries is thus demonstrated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟任意固体表面上两相流动的 VOF/嵌入式边界耦合方法
我们提出了一种混合 VOF/ 嵌入式边界方法,可以对存在任意形状固体的两相流进行建模。该方法依赖于现有方法的耦合:一种处理两相流的几何流体体积(VOF)方法和一种锐化任意固体几何形状的嵌入边界方法。将这些方法连贯地耦合起来并非易事,因此我们详细介绍了用于求解相应偏微分方程的四/八叉树空间离散化方法。接触角动力学建模是一个复杂的物理和数值问题。我们提出了与本切割单元法兼容的纳维-滑移边界条件,并通过泰勒-库埃特测试案例进行了验证。为了在流体-流体界面与固体表面相交时施加边界条件,我们开发了一种几何接触角方法。我们的方法在多个测试案例中得到了验证,包括圆柱体上液滴的扩散,以及二维和三维平面或倾斜平面上液滴的平衡形状。我们还讨论了液滴在平面上扩散的时间演变和收敛问题,以及在所使用的边界条件(迪里希特或纳维)下移动接触线的情况。由此证明,我们的数值方法能够解决不同固体几何形状下接触线的静力学和动力学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Optimal reconstruction of water-waves from noisy pressure measurements at the seabed Highly resolved peta-scale direct numerical simulations: Onset of Kelvin–Helmholtz Rayleigh–Taylor instability via pressure pulses Probabilistic machine learning to improve generalisation of data-driven turbulence modelling Ablation and molten layer flow simulation for plate model of SiO2f/SiO2 composite material using particle method MH-DCNet: An improved flow field prediction framework coupling neural network with physics solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1