Theoretical screening of dielectric/metal mirrors for enhanced photon recycling in GaAs solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-05-29 DOI:10.1016/j.solmat.2024.112931
Maarten van Eerden, Jasper van Gastel, Gerard J. Bauhuis, Elias Vlieg, John J. Schermer
{"title":"Theoretical screening of dielectric/metal mirrors for enhanced photon recycling in GaAs solar cells","authors":"Maarten van Eerden,&nbsp;Jasper van Gastel,&nbsp;Gerard J. Bauhuis,&nbsp;Elias Vlieg,&nbsp;John J. Schermer","doi":"10.1016/j.solmat.2024.112931","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectrics are often employed for high-reflectivity mirrors in semiconductor devices, since they leverage total internal reflection to reduce optical losses at semiconductor/metal interfaces. In this work, we investigate the impact of a range of dielectrics (ZnS, Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, MgF<sub>2</sub>, air) on mirror reflectivity, photon recycling probability and open-circuit voltage (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></math></span>) in thin-film GaAs solar cells with Au- or Ag-based mirrors. The impact of transition metal adhesion layers is investigated, as well as the influence of the dielectric and active layer thickness. It is found that the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></math></span> benefit of using a dielectric/metal mirror compared to a bare metal mirror (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span>) is small (<span><math><mo>≤</mo></math></span>10 mV) when the internal luminescent efficiency <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span> is lower than 0.95 for all mirror architectures investigated. Only in very-high-quality cells, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span> becomes significant, reaching <span><math><mo>∼</mo></math></span>30 mV at <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span> <span><math><mo>=</mo></math></span> 1 when using a 250-nm air-gap to enhance the reflectivity of a lossy Au mirror. This shows that dielectric/metal rear mirrors only provide significant <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></math></span> benefits when <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span> is very close to unity. Furthermore, we find that for lossy mirrors, transition metal adhesion layers do not have a strong impact on <span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span>, while for highly reflective mirrors like Ag, adhesion layers thicker than 1 nm are found to be detrimental to the already small <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></math></span> gains. Lastly, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span> is shown to be higher in cells with thinner active layers and in cells with planar compared to textured mirrors. In textured cells, however, the short-circuit current density and thereby the power conversion efficiency are affected more strongly by incorporating a dielectric into the rear mirror.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927024824002435/pdfft?md5=d307c9eeedbcfd62144c6489b38b883c&pid=1-s2.0-S0927024824002435-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824002435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectrics are often employed for high-reflectivity mirrors in semiconductor devices, since they leverage total internal reflection to reduce optical losses at semiconductor/metal interfaces. In this work, we investigate the impact of a range of dielectrics (ZnS, Si3N4, Al2O3, SiO2, MgF2, air) on mirror reflectivity, photon recycling probability and open-circuit voltage (Voc) in thin-film GaAs solar cells with Au- or Ag-based mirrors. The impact of transition metal adhesion layers is investigated, as well as the influence of the dielectric and active layer thickness. It is found that the Voc benefit of using a dielectric/metal mirror compared to a bare metal mirror (ΔVoc) is small (10 mV) when the internal luminescent efficiency ηint is lower than 0.95 for all mirror architectures investigated. Only in very-high-quality cells, ΔVoc becomes significant, reaching 30 mV at ηint = 1 when using a 250-nm air-gap to enhance the reflectivity of a lossy Au mirror. This shows that dielectric/metal rear mirrors only provide significant Voc benefits when ηint is very close to unity. Furthermore, we find that for lossy mirrors, transition metal adhesion layers do not have a strong impact on ΔVoc, while for highly reflective mirrors like Ag, adhesion layers thicker than 1 nm are found to be detrimental to the already small Voc gains. Lastly, ΔVoc is shown to be higher in cells with thinner active layers and in cells with planar compared to textured mirrors. In textured cells, however, the short-circuit current density and thereby the power conversion efficiency are affected more strongly by incorporating a dielectric into the rear mirror.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强砷化镓太阳能电池中光子再循环的电介质/金属镜理论筛选
半导体器件中的高反射镜通常采用电介质,因为电介质可以利用全内反射减少半导体/金属界面的光学损耗。在这项工作中,我们研究了一系列电介质(ZnS、Si3N4、Al2O3、SiO2、MgF2、空气)对带有金基或银基反射镜的薄膜砷化镓太阳能电池中反射镜的反射率、光子回收概率和开路电压(Voc)的影响。研究了过渡金属附着层的影响,以及介电层和活性层厚度的影响。研究发现,与裸金属镜面相比,当所有被研究镜面结构的内部发光效率 ηint 低于 0.95 时,使用电介质/金属镜面的 Voc 效益(ΔVoc)很小(≤10 mV)。只有在质量非常高的电池中,ΔVoc 才会变得显著,当使用 250 纳米气隙来提高有损金反射镜的反射率时,ηint = 1 时的ΔVoc 会达到 ∼30 mV。这表明,只有当 ηint 非常接近统一时,介质/金属后反射镜才能带来显著的 Voc 效益。此外,我们还发现,对于有损反射镜而言,过渡金属附着层对ΔVoc 的影响并不大,而对于银反射镜等高反射镜而言,厚度超过 1 nm 的附着层会对本已很小的 Voc 增益产生不利影响。最后,ΔVoc 在活性层较薄的电池和平面镜电池中比在纹理镜电池中更高。然而,在纹理电池中,在后反射镜中加入电介质对短路电流密度和功率转换效率的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1