Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation

Q3 Energy 燃料化学学报 Pub Date : 2024-05-29 DOI:10.1016/S1872-5813(23)60409-8
Hao SIMA, Xuefeng WANG, Cunbao DENG
{"title":"Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation","authors":"Hao SIMA,&nbsp;Xuefeng WANG,&nbsp;Cunbao DENG","doi":"10.1016/S1872-5813(23)60409-8","DOIUrl":null,"url":null,"abstract":"<div><p>The main components of power plant flue gas are N<sub>2</sub>, CO<sub>2</sub> and part O<sub>2</sub>. Injecting power plant flue gas into mine goaf can achieve CO<sub>2</sub> storage and replace nitrogen injection to prevent spontaneous combustion of left coal. However, O<sub>2</sub> in flue gas is one of the factors causing spontaneous combustion of left coal. Therefore, it is urgent to develop an economical and effective catalyst to remove O<sub>2</sub> from power plant flue gas. In this study, four types of copper-based catalysts were prepared using a controllable modulating support and loading capacity through co-precipitation method. Additionally, a series of CuO/CeO<sub>2</sub> catalysts were prepared. The catalysts were characterized using BET, XRD, ICP, TEM, H<sub>2</sub>-TPR and XPS to establish a structure-activity relationship of catalyst. The results showed that the addition of CeO<sub>2</sub> enhanced the dispersion of CuO, increased the oxygen vacancy in the catalyst, and improved the activity and reduction-oxidation performance of the catalyst. Moreover, the synergistic effect of Cu-Ce interface structure promoted the redox process, showing good activity and cycle stability. Among the catalysts, the 30CuO/CeO<sub>2</sub> sample showed the best catalytic deoxidation performance owing to its smallest CuO particle size, highest dispersion and oxygen vacancy concentration. The results of this study provide a reference for the development of low cost, recyclable, high activity and stability deoxidation catalysts.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323604098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The main components of power plant flue gas are N2, CO2 and part O2. Injecting power plant flue gas into mine goaf can achieve CO2 storage and replace nitrogen injection to prevent spontaneous combustion of left coal. However, O2 in flue gas is one of the factors causing spontaneous combustion of left coal. Therefore, it is urgent to develop an economical and effective catalyst to remove O2 from power plant flue gas. In this study, four types of copper-based catalysts were prepared using a controllable modulating support and loading capacity through co-precipitation method. Additionally, a series of CuO/CeO2 catalysts were prepared. The catalysts were characterized using BET, XRD, ICP, TEM, H2-TPR and XPS to establish a structure-activity relationship of catalyst. The results showed that the addition of CeO2 enhanced the dispersion of CuO, increased the oxygen vacancy in the catalyst, and improved the activity and reduction-oxidation performance of the catalyst. Moreover, the synergistic effect of Cu-Ce interface structure promoted the redox process, showing good activity and cycle stability. Among the catalysts, the 30CuO/CeO2 sample showed the best catalytic deoxidation performance owing to its smallest CuO particle size, highest dispersion and oxygen vacancy concentration. The results of this study provide a reference for the development of low cost, recyclable, high activity and stability deoxidation catalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜基氧载体催化电厂烟气脱氧研究
电厂烟气的主要成分是 N2、CO2 和部分 O2。将电厂烟气注入矿井煤层可实现二氧化碳封存,并替代氮气注入,防止残煤自燃。然而,烟气中的 O2 是导致残煤自燃的因素之一。因此,开发一种经济有效的催化剂来去除电厂烟气中的 O2 迫在眉睫。本研究通过共沉淀法制备了四种铜基催化剂,采用了可控调节的载体和负载能力。此外,还制备了一系列 CuO/CeO2 催化剂。使用 BET、XRD、ICP、TEM、H2-TPR 和 XPS 对催化剂进行了表征,以建立催化剂的结构-活性关系。结果表明,CeO2 的加入增强了 CuO 的分散,增加了催化剂中的氧空位,提高了催化剂的活性和还原氧化性能。此外,Cu-Ce界面结构的协同效应促进了氧化还原过程,表现出良好的活性和循环稳定性。在这些催化剂中,30CuO/CeO2 样品的 CuO 粒径最小、分散度最高、氧空位浓度最高,因此其催化脱氧性能最好。该研究结果为开发低成本、可回收、高活性和稳定性的脱氧催化剂提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Regulating crystal phase of TiO2 to enhance catalytic activity of Ni/TiO2 for solar-driven dry reforming of methane Effect of Rh loading on the selectivity to methanol and ethanol in the hydrogenation of CO2 over the Rh/CeO2 catalyst Preparation of silicon foam supported CoMn catalysts and their catalytic performances in higher alcohol synthesis via syngas Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis Synthesis of γ-Valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1