{"title":"Unconventional Computing Based on Four Wave Mixing in Highly Nonlinear Waveguides","authors":"Kostas Sozos;Stavros Deligiannidis;Charis Mesaritakis;Adonis Bogris","doi":"10.1109/JQE.2024.3405826","DOIUrl":null,"url":null,"abstract":"In this work we numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides. The proposed scheme can act as a fully analogue system for nonlinear signal processing directly in the optical domain. By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks. We first evaluate the performance of our scheme in the Santa-Fe chaotic time-series prediction. The true power of this processor is revealed in the all-optical nonlinearity compensation in an optical communication scenario where we provide results superior to those offered by strong machine learning algorithms with reduced power consumption and computational complexity. Finally, we showcase how the FWM module can be used as a reconfigurable nonlinear activation module being capable of reproducing characteristic functions such as sigmoid or rectified linear unit.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10539121/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides. The proposed scheme can act as a fully analogue system for nonlinear signal processing directly in the optical domain. By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks. We first evaluate the performance of our scheme in the Santa-Fe chaotic time-series prediction. The true power of this processor is revealed in the all-optical nonlinearity compensation in an optical communication scenario where we provide results superior to those offered by strong machine learning algorithms with reduced power consumption and computational complexity. Finally, we showcase how the FWM module can be used as a reconfigurable nonlinear activation module being capable of reproducing characteristic functions such as sigmoid or rectified linear unit.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.