New Global Map of Io’s Volcanic Thermal Emission and Discovery of Hemispherical Dichotomies

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS The Planetary Science Journal Pub Date : 2024-05-26 DOI:10.3847/psj/ad4346
Ashley Gerard Davies, Jason E. Perry, David A. Williams, Glenn J. Veeder and David M. Nelson
{"title":"New Global Map of Io’s Volcanic Thermal Emission and Discovery of Hemispherical Dichotomies","authors":"Ashley Gerard Davies, Jason E. Perry, David A. Williams, Glenn J. Veeder and David M. Nelson","doi":"10.3847/psj/ad4346","DOIUrl":null,"url":null,"abstract":"By combining multiple spacecraft and telescope data sets, the first fully global volcanic heat flow map of Io has been created, incorporating data down to spatial resolutions of ∼10 km pixel−1 in Io’s polar regions. Juno Jovian Infrared Auroral Mapper data have filled coverage gaps in Io’s polar regions and other areas poorly imaged by Galileo instruments. A total of 343 thermal sources are identified in data up to mid-2023. While poor correlations are found between the longitudinal distribution of volcanic thermal emission and radially integrated end-member models of internal heating, the best correlations are found with shallow asthenospheric tidal heating and magma ocean models and negative correlations with the deep-mantle heating model. The presence of polar volcanoes supports, but does not necessarily confirm, the presence of a magma ocean on Io. We find that the number of active volcanoes per unit area in polar regions is no different from that at lower latitudes, but we find that Io’s polar volcanoes are smaller, in terms of thermal emission, than those at lower latitudes. Half as much energy is emitted from polar volcanoes as from those at lower latitudes, and the thermal emission from the north polar cap volcanoes is twice that of those in the south polar cap. Apparent dichotomies in terms of volcanic advection and resulting power output exist between sub- and anti-Jovian hemispheres, between polar regions and lower latitudes, and between the north and south polar regions, possibly due to internal asymmetries or variations in lithospheric thickness.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad4346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

By combining multiple spacecraft and telescope data sets, the first fully global volcanic heat flow map of Io has been created, incorporating data down to spatial resolutions of ∼10 km pixel−1 in Io’s polar regions. Juno Jovian Infrared Auroral Mapper data have filled coverage gaps in Io’s polar regions and other areas poorly imaged by Galileo instruments. A total of 343 thermal sources are identified in data up to mid-2023. While poor correlations are found between the longitudinal distribution of volcanic thermal emission and radially integrated end-member models of internal heating, the best correlations are found with shallow asthenospheric tidal heating and magma ocean models and negative correlations with the deep-mantle heating model. The presence of polar volcanoes supports, but does not necessarily confirm, the presence of a magma ocean on Io. We find that the number of active volcanoes per unit area in polar regions is no different from that at lower latitudes, but we find that Io’s polar volcanoes are smaller, in terms of thermal emission, than those at lower latitudes. Half as much energy is emitted from polar volcanoes as from those at lower latitudes, and the thermal emission from the north polar cap volcanoes is twice that of those in the south polar cap. Apparent dichotomies in terms of volcanic advection and resulting power output exist between sub- and anti-Jovian hemispheres, between polar regions and lower latitudes, and between the north and south polar regions, possibly due to internal asymmetries or variations in lithospheric thickness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新的木卫二火山热辐射全球分布图和半球二分法的发现
通过结合多个航天器和望远镜数据集,绘制了第一张木卫二全球火山热流图,其中包含了木卫二极区空间分辨率为 10 公里像素-1 的数据。朱诺木卫二红外极光成像仪的数据填补了木卫二极区和伽利略仪器成像较差的其他区域的覆盖空白。截至 2023 年中期的数据共确定了 343 个热源。火山热辐射的纵向分布与内部加热的径向集成末端成员模型之间的相关性较差,而与浅层星体层潮汐加热和岩浆海洋模型的相关性最好,与深幔加热模型的相关性为负。极地火山的存在支持但不一定证实木卫二上存在岩浆洋。我们发现,极地地区单位面积上的活火山数量与低纬度地区的活火山数量并无不同,但我们发现,就热辐射而言,木卫二的极地火山比低纬度地区的火山要小。极地火山释放的能量是低纬度火山的一半,北极冠火山的热辐射是南极冠火山的两倍。在亚乔木半球和反乔木半球之间、极地地区和低纬度地区之间以及南北极地区之间,可能由于内部不对称或岩石圈厚度的变化,在火山平流和由此产生的能量输出方面存在明显的两极分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
期刊最新文献
Jovian Vortex Hunter: A Citizen Science Project to Study Jupiter’s Vortices Experimental Method for Measuring Cohesion of Regolith via Electrostatic Lofting Mid-infrared Measurements of Ion-irradiated Carbonaceous Meteorites: How to Better Detect Space Weathering Effects Triton’s Captured Youth: Tidal Heating Kept Triton Warm and Active for Billions of Years The Global Distribution of Water and Hydroxyl on the Moon as Seen by the Moon Mineralogy Mapper (M3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1