Random noise attenuation in seismic data using an adaptive thresholding and the second-order variant time-reassigned synchrosqueezing transform

IF 2.3 4区 地球科学 Acta Geophysica Pub Date : 2024-05-27 DOI:10.1007/s11600-024-01355-x
Rasoul Anvari, Amin Roshandel Kahoo, Mehrdad Soleimani Monfared, Mokhtar Mohammadi
{"title":"Random noise attenuation in seismic data using an adaptive thresholding and the second-order variant time-reassigned synchrosqueezing transform","authors":"Rasoul Anvari, Amin Roshandel Kahoo, Mehrdad Soleimani Monfared, Mokhtar Mohammadi","doi":"10.1007/s11600-024-01355-x","DOIUrl":null,"url":null,"abstract":"<p>Seismic data analysis often faces the challenge of random noise contamination from various sources. To overcome this, innovative noise attenuation methods utilizing seismic signal properties are needed. This study focuses on efficiently suppressing random noise in the domain of time and frequency by accurately estimating instantaneous frequency using the single-valued group delay characteristic of seismic signals. The time-reassigned synchrosqueezing transform (TSST) and its second-order variant (TSST2) offer high-resolution time-frequency representations (TFRs) for noise suppression. Expanding on these advancements, we propose an efficient noise suppression method that integrates the adaptive thresholding model into the TSST2 framework and employs sparse representation of the TFR through low-rank estimation. This method effectively attenuates noise while preserving essential signal information. The proposed approach operates trace by trace on recorded data, initially transforming it into a sparse subspace using TSST2. The adaptive thresholding model then decomposes the resulting TFR into sparse and semi-low-rank components, achieving a high-resolution and sparse TFR for efficient separation of noise and signal. After noise suppression, the seismic data can be fully reconstructed by inversely transforming the semi-low-rank component data into the time domain. This method addresses previous limitations in noise attenuation techniques and provides a practical solution for enhancing seismic data quality.</p>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"32 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11600-024-01355-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic data analysis often faces the challenge of random noise contamination from various sources. To overcome this, innovative noise attenuation methods utilizing seismic signal properties are needed. This study focuses on efficiently suppressing random noise in the domain of time and frequency by accurately estimating instantaneous frequency using the single-valued group delay characteristic of seismic signals. The time-reassigned synchrosqueezing transform (TSST) and its second-order variant (TSST2) offer high-resolution time-frequency representations (TFRs) for noise suppression. Expanding on these advancements, we propose an efficient noise suppression method that integrates the adaptive thresholding model into the TSST2 framework and employs sparse representation of the TFR through low-rank estimation. This method effectively attenuates noise while preserving essential signal information. The proposed approach operates trace by trace on recorded data, initially transforming it into a sparse subspace using TSST2. The adaptive thresholding model then decomposes the resulting TFR into sparse and semi-low-rank components, achieving a high-resolution and sparse TFR for efficient separation of noise and signal. After noise suppression, the seismic data can be fully reconstructed by inversely transforming the semi-low-rank component data into the time domain. This method addresses previous limitations in noise attenuation techniques and provides a practical solution for enhancing seismic data quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应阈值和二阶变体时间重分配同步阙值变换减弱地震数据中的随机噪声
地震数据分析经常面临来自各种来源的随机噪声污染的挑战。为克服这一问题,需要利用地震信号特性的创新噪声衰减方法。本研究的重点是利用地震信号的单值群延迟特性准确估计瞬时频率,从而有效抑制时间和频率域的随机噪声。时间重新分配同步queezing变换(TSST)及其二阶变体(TSST2)提供了用于噪声抑制的高分辨率时频表示(TFR)。在这些进步的基础上,我们提出了一种高效的噪声抑制方法,它将自适应阈值模型集成到 TSST2 框架中,并通过低秩估计采用稀疏表示 TFR。这种方法在保留基本信号信息的同时有效地抑制了噪声。所提出的方法对记录的数据进行逐一跟踪,首先使用 TSST2 将其转换为稀疏子空间。然后,自适应阈值模型将得到的 TFR 分解为稀疏和半低阶分量,从而得到高分辨率的稀疏 TFR,实现噪声和信号的有效分离。噪声抑制后,通过将半低秩分量数据反向转换到时域,可以完全重建地震数据。该方法解决了以往噪声衰减技术的局限性,为提高地震数据质量提供了切实可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geophysica
Acta Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.80
自引率
13.00%
发文量
251
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
期刊最新文献
Editorial commentary Comment on “Analysis of extreme rainfall trend and mapping of the Wadi pluvial flood in the Gaza coastal plain of Palestine” A study on geoelectrical recognition model of seawater/freshwater interface based on convolutional neural network: an application in sand tank experiments Integrated geophysical model approach for Nazca Plate subduction in Ecuador Lightning activity and its connection with weather-related parameters over Sri Lanka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1