{"title":"On the weight zero compactly supported cohomology of","authors":"Madeline Brandt, Melody Chan, Siddarth Kannan","doi":"10.1017/fms.2024.53","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline2.png\"/> <jats:tex-math> $g\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline3.png\"/> <jats:tex-math> $n\\ge 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline4.png\"/> <jats:tex-math> $\\mathcal {H}_{g,n}\\subset \\mathcal {M}_{g,n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the complex moduli stack of <jats:italic>n</jats:italic>-marked smooth hyperelliptic curves of genus <jats:italic>g</jats:italic>. A normal crossings compactification of this space is provided by the theory of pointed admissible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline5.png\"/> <jats:tex-math> $\\mathbb {Z}/2\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline6.png\"/> <jats:tex-math> $\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this graph complex, we give a sum-over-graphs formula for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline7.png\"/> <jats:tex-math> $S_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-equivariant weight zero compactly supported Euler characteristic of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline8.png\"/> <jats:tex-math> $\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This formula allows for the computer-aided calculation, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline9.png\"/> <jats:tex-math> $g\\le 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the generating function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline10.png\"/> <jats:tex-math> $\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for these equivariant Euler characteristics for all <jats:italic>n</jats:italic>. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible <jats:italic>G</jats:italic>-covers of genus zero curves, when <jats:italic>G</jats:italic> is abelian, as a symmetric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline11.png\"/> <jats:tex-math> $\\Delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex. We use these complexes to generalize our formula for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline12.png\"/> <jats:tex-math> $\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to moduli spaces of <jats:italic>n</jats:italic>-pointed smooth abelian covers of genus zero curves.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.53","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For $g\ge 2$ and $n\ge 0$ , let $\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$ denote the complex moduli stack of n-marked smooth hyperelliptic curves of genus g. A normal crossings compactification of this space is provided by the theory of pointed admissible $\mathbb {Z}/2\mathbb {Z}$ -covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of $\mathcal {H}_{g, n}$ . Using this graph complex, we give a sum-over-graphs formula for the $S_n$ -equivariant weight zero compactly supported Euler characteristic of $\mathcal {H}_{g, n}$ . This formula allows for the computer-aided calculation, for each $g\le 7$ , of the generating function $\mathsf {h}_g$ for these equivariant Euler characteristics for all n. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible G-covers of genus zero curves, when G is abelian, as a symmetric $\Delta $ -complex. We use these complexes to generalize our formula for $\mathsf {h}_g$ to moduli spaces of n-pointed smooth abelian covers of genus zero curves.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.