{"title":"Graphitic carbon nitride film deposited with nitrogen-doped carbon nanoparticles as electrode for high-performance supercapacitors","authors":"Jun Zhu, Qiang Ma, Lirong Kong, Jianguo Dai, Keqiang Xu, Quanrun Chen, Zhiguo Zhao","doi":"10.1007/s42823-024-00754-w","DOIUrl":null,"url":null,"abstract":"<div><p>Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and 200.0 F g<sup>−1</sup> at 20 A g<sup>−1</sup>, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and thus the supercapacitor with a high energy density of 9.22 Wh kg<sup>−1</sup> was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2279 - 2290"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00754-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g−1 at 0.5 A g−1 and 200.0 F g−1 at 20 A g−1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g−1 at 0.5 A g−1, and thus the supercapacitor with a high energy density of 9.22 Wh kg−1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.