Study of an Electrospinning Process Using Orthogonal Array

IF 1.9 4区 工程技术 Q2 Engineering International Journal of Precision Engineering and Manufacturing Pub Date : 2024-05-29 DOI:10.1007/s12541-024-01049-w
Trieu Khoa Nguyen, Van-Tho Nguyen
{"title":"Study of an Electrospinning Process Using Orthogonal Array","authors":"Trieu Khoa Nguyen, Van-Tho Nguyen","doi":"10.1007/s12541-024-01049-w","DOIUrl":null,"url":null,"abstract":"<p>Electrospinning represents a straightforward and adaptable technique for producing polymer-based nanofibers. However, many studies lack systematic approaches and fail to provide quantitative accuracy in describing electrospinning process parameters. This often leads to contradictory or inconsistent findings, highlighting the need for orthogonal methods to thoroughly investigate the qualitative and quantitative relationships between fiber characteristics and various processing and material parameters. In this study, polystyrene (PS) was employed using the mixture of <i>N</i>,<i>N</i>-dimethyl formamide (DMF) and tetrahydrofuran (THF) as a solvent, with its applied voltage, nozzle-to-collector distance, PS concentration, and flow rate parameters to be explored using an orthogonal array. Utilizing an L9 (3<sup>4</sup>) orthogonal array design, experiments were conducted with varying electrospinning parameters. The results demonstrated that PS concentration had the greatest influence on the uniformity of fiber diameter, 63%. At the same time, too low PS concentration also led to fibers with irregular beads. This research contributes significantly to the production of uniform fibers with high utility in the field of pollution treatment and medical applications.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01049-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospinning represents a straightforward and adaptable technique for producing polymer-based nanofibers. However, many studies lack systematic approaches and fail to provide quantitative accuracy in describing electrospinning process parameters. This often leads to contradictory or inconsistent findings, highlighting the need for orthogonal methods to thoroughly investigate the qualitative and quantitative relationships between fiber characteristics and various processing and material parameters. In this study, polystyrene (PS) was employed using the mixture of N,N-dimethyl formamide (DMF) and tetrahydrofuran (THF) as a solvent, with its applied voltage, nozzle-to-collector distance, PS concentration, and flow rate parameters to be explored using an orthogonal array. Utilizing an L9 (34) orthogonal array design, experiments were conducted with varying electrospinning parameters. The results demonstrated that PS concentration had the greatest influence on the uniformity of fiber diameter, 63%. At the same time, too low PS concentration also led to fibers with irregular beads. This research contributes significantly to the production of uniform fibers with high utility in the field of pollution treatment and medical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用正交阵列研究电纺丝工艺
电纺丝是一种生产聚合物基纳米纤维的简单而适用的技术。然而,许多研究缺乏系统性方法,无法准确定量描述电纺丝工艺参数。这往往导致研究结果相互矛盾或不一致,突出表明需要采用正交方法来彻底研究纤维特性与各种加工和材料参数之间的定性和定量关系。在本研究中,聚苯乙烯(PS)使用 N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)的混合物作为溶剂,其应用电压、喷嘴到收集器的距离、PS 浓度和流速参数将使用正交阵列进行探索。利用 L9 (34) 正交阵列设计,进行了不同电纺丝参数的实验。结果表明,PS 浓度对纤维直径均匀性的影响最大,达到 63%。同时,过低的 PS 浓度也会导致纤维呈不规则的珠状。这项研究为生产在污染处理和医疗应用领域具有高实用性的均匀纤维做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
10.50%
发文量
115
审稿时长
3-6 weeks
期刊介绍: The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to: - Precision Machining Processes - Manufacturing Systems - Robotics and Automation - Machine Tools - Design and Materials - Biomechanical Engineering - Nano/Micro Technology - Rapid Prototyping and Manufacturing - Measurements and Control Surveys and reviews will also be planned in consultation with the Editorial Board.
期刊最新文献
The Impact of Contralateral Cane Placement on the External Knee Adduction Moment Piecewise Modification of Cycloidal Gear in RV Reducer: Application of Spline Interpolation Theory and Comparison with a Combination Modification Optimization Method Equivalent Error Based Modelling for Prediction and Analysis of Measuring Accuracy in 3-Axis FXYZ Coordinate Measuring Machines from Position, Repeatability and Reversibility Errors Experimental Study on Superplastic Forming for Inconel 718 Alloy Bipolar Plate A Comprehensive Evaluation Method for Generalized Reliability of CNC Machine Tools Based on Improved Entropy-Weighted Extensible Matter-Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1