P K Meena, M Mandal, P Manna, S Srivastava, S Sharma, P Mishra and R P Singh
{"title":"Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf)","authors":"P K Meena, M Mandal, P Manna, S Srivastava, S Sharma, P Mishra and R P Singh","doi":"10.1088/1361-6668/ad4a32","DOIUrl":null,"url":null,"abstract":"Recently, the emergence of superconductivity in kagome metals has generated significant interest due to its interaction with flat bands and topological electronic states, which exhibit a range of unusual quantum characteristics. This study thoroughly investigates largely unexplored breathing kagome structure C14 Laves phase compounds XOs2 (X = Zr, Hf) by XRD, electrical transport, magnetization, and specific heat measurements. Our analyses confirm the presence of the MgZn2-type structure in ZrOs2 and HfOs2 compounds, exhibiting type-II superconductivity with critical temperature ( ) values of 2.90(3) K and 2.69(6) K, respectively. Furthermore, specific heat measurements and electron–phonon coupling constants for both compounds indicate weakly coupled fully gapped superconductivity.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad4a32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the emergence of superconductivity in kagome metals has generated significant interest due to its interaction with flat bands and topological electronic states, which exhibit a range of unusual quantum characteristics. This study thoroughly investigates largely unexplored breathing kagome structure C14 Laves phase compounds XOs2 (X = Zr, Hf) by XRD, electrical transport, magnetization, and specific heat measurements. Our analyses confirm the presence of the MgZn2-type structure in ZrOs2 and HfOs2 compounds, exhibiting type-II superconductivity with critical temperature ( ) values of 2.90(3) K and 2.69(6) K, respectively. Furthermore, specific heat measurements and electron–phonon coupling constants for both compounds indicate weakly coupled fully gapped superconductivity.