Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems

Qing-Yu Wang and Cun Xue
{"title":"Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems","authors":"Qing-Yu Wang and Cun Xue","doi":"10.1088/1361-6668/ad74ea","DOIUrl":null,"url":null,"abstract":"Hybrid multi-superconducting structures exist in a variety of superconducting devices, such as superconductor–insulator–superconductor multilayer structure in superconducting radio-frequency cavities, bilayer structures in superconducting electronic devices, and superconducting wires. Investigating the vortex dynamics at microscopic scale is crucial for applications of hybrid superconducting structures.The time-dependent Ginzburg–Landau (TDGL) theory is a powerful tool for describing the vortex dynamics in superconductors through the order parameter and vector potential A. However, the difference in order parameter , coherence length , and GL parameters among the components of hybrid systems will bring significant challenges to numerical simulation of TDGL equations. Meanwhile, the energy dissipation associated with vortex motion necessitates considering the thermal effects on vortex dynamics. In this paper, we introduce an efficient, stable, and parallel implicit finite-difference algorithm, implemented on GPU, for coupling the TDGL and thermal diffusion equations for hybrid structures. Linearization of nonlinear source terms is applied to TDGL-II to enhance the stability of algorithm. The iterative Jacobi method is applied to the generalized TDGL-I. Alternating direction implicit methods combined with tridiagonal matrix method or CTDMA are used to solve TDGL-II and heat diffusion equations with different boundary conditions. This algorithm enables us to explore the vortex dynamics with associated thermal effects of mesoscopic large hybrid multi-superconducting structures within reasonable amounts of computational time. Our approach aids in revealing and understanding the underlying physical mechanisms behind the collective response of vortices, and contributes to the mastery, adjustment, and optimization of superconductivities in hybrid structures.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad74ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid multi-superconducting structures exist in a variety of superconducting devices, such as superconductor–insulator–superconductor multilayer structure in superconducting radio-frequency cavities, bilayer structures in superconducting electronic devices, and superconducting wires. Investigating the vortex dynamics at microscopic scale is crucial for applications of hybrid superconducting structures.The time-dependent Ginzburg–Landau (TDGL) theory is a powerful tool for describing the vortex dynamics in superconductors through the order parameter and vector potential A. However, the difference in order parameter , coherence length , and GL parameters among the components of hybrid systems will bring significant challenges to numerical simulation of TDGL equations. Meanwhile, the energy dissipation associated with vortex motion necessitates considering the thermal effects on vortex dynamics. In this paper, we introduce an efficient, stable, and parallel implicit finite-difference algorithm, implemented on GPU, for coupling the TDGL and thermal diffusion equations for hybrid structures. Linearization of nonlinear source terms is applied to TDGL-II to enhance the stability of algorithm. The iterative Jacobi method is applied to the generalized TDGL-I. Alternating direction implicit methods combined with tridiagonal matrix method or CTDMA are used to solve TDGL-II and heat diffusion equations with different boundary conditions. This algorithm enables us to explore the vortex dynamics with associated thermal effects of mesoscopic large hybrid multi-superconducting structures within reasonable amounts of computational time. Our approach aids in revealing and understanding the underlying physical mechanisms behind the collective response of vortices, and contributes to the mastery, adjustment, and optimization of superconductivities in hybrid structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合超导体系统中涡旋行为的时变金兹堡-朗道理论与热效应耦合的稳定隐式数值算法
混合多超导结构存在于各种超导设备中,例如超导射频腔中的超导体-绝缘体-超导体多层结构、超导电子设备中的双层结构以及超导线缆。通过阶次参数和矢量势 A,时变金兹堡-朗道(TDGL)理论是描述超导体中涡旋动力学的有力工具。然而,混合系统各组成部分之间在阶次参数、相干长度和 GL 参数上的差异将给 TDGL 方程的数值模拟带来巨大挑战。同时,与涡旋运动相关的能量耗散需要考虑涡旋动力学的热效应。本文介绍了一种在 GPU 上实现的高效、稳定、并行的隐式有限差分算法,用于耦合混合结构的 TDGL 和热扩散方程。对 TDGL-II 中的非线性源项进行线性化处理,以增强算法的稳定性。迭代雅可比法应用于广义 TDGL-I。交替方向隐含法与三对角矩阵法或 CTDMA 相结合,用于求解具有不同边界条件的 TDGL-II 和热扩散方程。这种算法使我们能够在合理的计算时间内探索介观大型混合多超导结构的涡旋动力学及相关热效应。我们的方法有助于揭示和理解涡旋集体反应背后的潜在物理机制,并有助于掌握、调整和优化混合结构中的超导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1