Uppuluri Lakshmi Soundharya, G Vadivu, Gogineni Krishna Chaitanya
{"title":"Distributed file systembased optimization algorithm","authors":"Uppuluri Lakshmi Soundharya, G Vadivu, Gogineni Krishna Chaitanya","doi":"10.1007/s11276-024-03760-y","DOIUrl":null,"url":null,"abstract":"<p>Database engines and file systems have been using prefetching and caching technologies for decades to enhance the performance of I/O-intensive applications. When future data access needs to be accelerated, prefetching methods often provide gains depending on the latency of the entire system by loading primary memory elements. Its execution time, where the data level prefetching rules are set, has to be much improved, as they are challenging to optimize, comprehend, and manage. This paper aims to introduce a novel distributed file system (DFS) model through dynamic prefetching, that includes four processes such as (1) Identification of popular files, (2) Estimation of support value for a file block, (3) Extraction of frequent block access patterns, and (4) Matching algorithm. At first, the input files are given to the first phase (i.e.), identification of popular sizes, where the popular files are identified. The support value of the file blocks that correspond to popular files is calculated in the second stage. Then, the extraction of frequent block access patterns is done in the third phase. At last, in the matching algorithm, the identification or prediction of frequent access pattern of the query is done by the optimized Neural Network (NN). Here, the weight of NN is optimally tuned by the Harmonic Mean based Grey Wolf Optimization (HMGWO) Algorithm.The proposed NN + HMGWO model produces reduced FPR values with good quality, which are 70.84%, 73.86%, 70.51%, 62.90%, 55.76%, 78.63%, and 73.86%, respectively, in comparison to other standard models like NN + WOA, NN + GWO, NN + PSO, NN + FF, FBAP, NN, and SVM. Lastly, the effectiveness of a chosen scheme is compared to other current methods in terms of delay analysis, latency analysis, hit ratio analysis, and correspondingly.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03760-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Database engines and file systems have been using prefetching and caching technologies for decades to enhance the performance of I/O-intensive applications. When future data access needs to be accelerated, prefetching methods often provide gains depending on the latency of the entire system by loading primary memory elements. Its execution time, where the data level prefetching rules are set, has to be much improved, as they are challenging to optimize, comprehend, and manage. This paper aims to introduce a novel distributed file system (DFS) model through dynamic prefetching, that includes four processes such as (1) Identification of popular files, (2) Estimation of support value for a file block, (3) Extraction of frequent block access patterns, and (4) Matching algorithm. At first, the input files are given to the first phase (i.e.), identification of popular sizes, where the popular files are identified. The support value of the file blocks that correspond to popular files is calculated in the second stage. Then, the extraction of frequent block access patterns is done in the third phase. At last, in the matching algorithm, the identification or prediction of frequent access pattern of the query is done by the optimized Neural Network (NN). Here, the weight of NN is optimally tuned by the Harmonic Mean based Grey Wolf Optimization (HMGWO) Algorithm.The proposed NN + HMGWO model produces reduced FPR values with good quality, which are 70.84%, 73.86%, 70.51%, 62.90%, 55.76%, 78.63%, and 73.86%, respectively, in comparison to other standard models like NN + WOA, NN + GWO, NN + PSO, NN + FF, FBAP, NN, and SVM. Lastly, the effectiveness of a chosen scheme is compared to other current methods in terms of delay analysis, latency analysis, hit ratio analysis, and correspondingly.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.