{"title":"Unveiling transformative potential: recent advances in graphene-based polymer composites","authors":"Maziyar Sabet","doi":"10.1007/s13726-024-01337-2","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene-polymer composites represent a burgeoning field within materials science, offering the potential to revolutionize various industrial applications by synergistically combining the exceptional properties of graphene with the versatility of polymers. This review transcends prior summaries by focusing on recent breakthroughs in dispersion techniques, a critical factor governing composite performance. We elucidate how advancements in dispersion control unlock a paradigm shift in functionalities like mechanical strength, electrical conductivity, and barrier properties. This targeted approach distinguishes this review from broader surveys. Furthermore, we explore novel preparation methods beyond established techniques like solution mixing and in situ polymerization, highlighting their role in achieving exceptional composite performance. The review critically examines emerging applications across diverse industries, showcasing how recent strides empower graphene–polymer composites to disrupt sectors like aerospace, automotive, electronics, and biomedicine. While acknowledging persistent challenges in cost, scalability, and environmental impact, the review emphasizes ongoing research efforts to overcome these hurdles. By providing a roadmap for future advancements, this work serves as a valuable resource for researchers, engineers, and innovators seeking to harness the transformative potential of graphene–polymer composites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 11","pages":"1651 - 1665"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01337-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-polymer composites represent a burgeoning field within materials science, offering the potential to revolutionize various industrial applications by synergistically combining the exceptional properties of graphene with the versatility of polymers. This review transcends prior summaries by focusing on recent breakthroughs in dispersion techniques, a critical factor governing composite performance. We elucidate how advancements in dispersion control unlock a paradigm shift in functionalities like mechanical strength, electrical conductivity, and barrier properties. This targeted approach distinguishes this review from broader surveys. Furthermore, we explore novel preparation methods beyond established techniques like solution mixing and in situ polymerization, highlighting their role in achieving exceptional composite performance. The review critically examines emerging applications across diverse industries, showcasing how recent strides empower graphene–polymer composites to disrupt sectors like aerospace, automotive, electronics, and biomedicine. While acknowledging persistent challenges in cost, scalability, and environmental impact, the review emphasizes ongoing research efforts to overcome these hurdles. By providing a roadmap for future advancements, this work serves as a valuable resource for researchers, engineers, and innovators seeking to harness the transformative potential of graphene–polymer composites.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.