{"title":"Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review","authors":"Manash Pratim Barman, Dipanwita Basak, Debasis Borah, Deepmoni Brahma, Mandira Debnath, Hemaprobha Saikia","doi":"10.1515/revic-2024-0008","DOIUrl":null,"url":null,"abstract":"Green nanotechnology comprises the use of natural sources such as plant extracts as both reducing and stabilizing agents thereby reducing the reliance on hazardous chemicals. Recent breakthroughs in nanotechnology involve the incorporation of various metals to create mono and bimetallic nanoparticles, catalyzing transformative shifts. However, concerns arise due to the environmental impact of traditional synthesis methods. An alternative approach focuses on biosynthesized metal nanoparticles using clay, specifically Bentonite, MMT (Montmorillonite) and Kaolinite as supportive materials, emphasizing the prevention of agglomeration with clay and the use of plant extracts. The integration of clay, especially Bentonite, MMT and Kaolinite enhances the stability and functionality. The review emphasizes mitigating environmental impact by reducing metal ions and explores the use of phytochemicals fro environmentally friendly nanoparticle synthesis. Incorporating clay minerals not only improves synthesis efficiency but also minimizes the ecological footprint. Future research is expected to focus on integrative approaches in plant nanotechnology, particularly in agriculture and broader plant science. The comprehensive review covers literature from 2015 to 2023, providing systematic and interpretative data, highlighting progress and potential in eco-friendly metal nanoparticles synthesis supported on clay minerals.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"63 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2024-0008","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Green nanotechnology comprises the use of natural sources such as plant extracts as both reducing and stabilizing agents thereby reducing the reliance on hazardous chemicals. Recent breakthroughs in nanotechnology involve the incorporation of various metals to create mono and bimetallic nanoparticles, catalyzing transformative shifts. However, concerns arise due to the environmental impact of traditional synthesis methods. An alternative approach focuses on biosynthesized metal nanoparticles using clay, specifically Bentonite, MMT (Montmorillonite) and Kaolinite as supportive materials, emphasizing the prevention of agglomeration with clay and the use of plant extracts. The integration of clay, especially Bentonite, MMT and Kaolinite enhances the stability and functionality. The review emphasizes mitigating environmental impact by reducing metal ions and explores the use of phytochemicals fro environmentally friendly nanoparticle synthesis. Incorporating clay minerals not only improves synthesis efficiency but also minimizes the ecological footprint. Future research is expected to focus on integrative approaches in plant nanotechnology, particularly in agriculture and broader plant science. The comprehensive review covers literature from 2015 to 2023, providing systematic and interpretative data, highlighting progress and potential in eco-friendly metal nanoparticles synthesis supported on clay minerals.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids