{"title":"Economical portable sensor based hybrid monitoring for high-resolution air pollution mapping at an urban hotspot","authors":"Sunil Gulia, Prachi Goyal, Swapnil Swapnil, Heena Chauhan, Sanjeev Kumar Goyal","doi":"10.1007/s11869-024-01589-0","DOIUrl":null,"url":null,"abstract":"<div><p>Urban areas in developing countries are facing challenges in air quality management due to high spatio-temporal variations in emission sources. This complexity requires innovative ways of assessment and management of air quality within the city. The present work provides a roadmap for hybrid monitoring-based air quality assessment and local air quality management plan (LAMP) for urban hotspot. In this study, fixed and mobile economical portable sensors (EPS) are deployed around a continuous ambient air quality monitoring station (CAAQMS) to assess the trends in air quality of the area. The pre-evaluated EPS are used to accurately capture the hyperlocal variations in the pollution level around an expensive regulatory monitoring station in Delhi, India. The micro-meteorology around the CAAQMS is also taken into account by fixing additional weather stations in different directions. The findings indicate high monthly variations in PM<sub>2.5</sub> (160-201 µg/m<sup>3</sup>) and NO<sub>2</sub> (41–56 µg/m<sup>3</sup>) concentrations within a small 2 km radial area around a CAAQMS. The polarplot analysis indicates that local sources are responsible for pollution level. Based on correlation analysis, PM<sub>2.5</sub> dispersion around CAAQMS is correlated well with relative humidity (RH) (r<sup>2</sup> = 0.58). It is also observed that green area enhance RH and reduce ambient temperature which ultimately influences the pollutant dispersion. This robust assessment of air quality variations at micro scale brings the need for designing of effective and efficient mitigation measures at the local level for hotspots.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 11","pages":"2539 - 2554"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01589-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban areas in developing countries are facing challenges in air quality management due to high spatio-temporal variations in emission sources. This complexity requires innovative ways of assessment and management of air quality within the city. The present work provides a roadmap for hybrid monitoring-based air quality assessment and local air quality management plan (LAMP) for urban hotspot. In this study, fixed and mobile economical portable sensors (EPS) are deployed around a continuous ambient air quality monitoring station (CAAQMS) to assess the trends in air quality of the area. The pre-evaluated EPS are used to accurately capture the hyperlocal variations in the pollution level around an expensive regulatory monitoring station in Delhi, India. The micro-meteorology around the CAAQMS is also taken into account by fixing additional weather stations in different directions. The findings indicate high monthly variations in PM2.5 (160-201 µg/m3) and NO2 (41–56 µg/m3) concentrations within a small 2 km radial area around a CAAQMS. The polarplot analysis indicates that local sources are responsible for pollution level. Based on correlation analysis, PM2.5 dispersion around CAAQMS is correlated well with relative humidity (RH) (r2 = 0.58). It is also observed that green area enhance RH and reduce ambient temperature which ultimately influences the pollutant dispersion. This robust assessment of air quality variations at micro scale brings the need for designing of effective and efficient mitigation measures at the local level for hotspots.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.