{"title":"Synthetic studies of zinc-doped cadmium aluminum ferrite for the photocatalytic degradation of atrazine","authors":"Muhammad Yasar","doi":"10.1007/s11144-024-02634-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the synthesis, characterization, and photocatalytic activity of zinc-doped cadmium aluminum ferrite Zn<sub>x</sub>Cd<sub>X−1</sub>Al<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>4</sub> (X = 0,0.3) nanoparticles were investigated for the degradation of atrazine. The nanoparticles were synthesized via a sol–gel method, and their structural, morphological, and optical properties were characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the synthesized nanoparticles was evaluated under visible-light irradiation, and the influence of various parameters, such as Zn doping concentration, initial atrazine concentration, pH, temperature, catalyst dose, light intensity, and addition of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), was investigated. The results demonstrated a significant enhancement in atrazine degradation with Zn-doped cadmium aluminum ferrite, achieving a removal efficiency of 93% compared with 75% for undoped cadmium aluminum ferrite at normal conditions. Scavenger analysis suggested that hydroxyl radicals (OH˙) played a crucial role in the photodegradation process. These findings contribute to the development of efficient and sustainable photocatalysts for the degradation of atrazine and other organic pollutants.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 4","pages":"2469 - 2486"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02634-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the synthesis, characterization, and photocatalytic activity of zinc-doped cadmium aluminum ferrite ZnxCdX−1Al0.1Fe1.9O4 (X = 0,0.3) nanoparticles were investigated for the degradation of atrazine. The nanoparticles were synthesized via a sol–gel method, and their structural, morphological, and optical properties were characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the synthesized nanoparticles was evaluated under visible-light irradiation, and the influence of various parameters, such as Zn doping concentration, initial atrazine concentration, pH, temperature, catalyst dose, light intensity, and addition of hydrogen peroxide (H2O2), was investigated. The results demonstrated a significant enhancement in atrazine degradation with Zn-doped cadmium aluminum ferrite, achieving a removal efficiency of 93% compared with 75% for undoped cadmium aluminum ferrite at normal conditions. Scavenger analysis suggested that hydroxyl radicals (OH˙) played a crucial role in the photodegradation process. These findings contribute to the development of efficient and sustainable photocatalysts for the degradation of atrazine and other organic pollutants.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.