M. L. Sworna Kokila, E. Fenil, N. P. Ponnuviji, G. Nirmala
{"title":"Securing cloud-based medical data: an optimal dual kernal support vector approach for enhanced EHR management","authors":"M. L. Sworna Kokila, E. Fenil, N. P. Ponnuviji, G. Nirmala","doi":"10.1007/s13198-024-02356-1","DOIUrl":null,"url":null,"abstract":"<p>Cloud computing is one of the advanced technologies to process rapidly growing data. At the same instant, the necessity of storage space for the voluminous digital medical data has been amplified thanks to the mounting electronic health records. It influences the employment of cloud outsourcing methodology. Data outsourced to the cloud space must be highly secured. For this, the paper presents a DKS-CWH algorithm that is based on a dual kernal support vector (DKS) and crossover-based wild horse optimization algorithm. In this paper, the input grayscale images are gathered from the medical MINST dataset which includes 58,954 images comprising six classes of CXR (chest X-ray), breast MRI, abdomen CT, chest CT, hand (hand X-ray), and head CT. The classification and feature extraction processes are performed at the cloud layer using the DKS-CWH algorithm. The hyperparameters of the DKS approach are optimized with the crossover-based WHO algorithm. The performance evaluation involves analyzing its effectiveness according to prominent metrics such as precision, accuracy, recall, and F1-score and comparing the outputs with the other competent methods. The results showed the DKS-CWH model offered robust performance with 97% accuracy.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02356-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud computing is one of the advanced technologies to process rapidly growing data. At the same instant, the necessity of storage space for the voluminous digital medical data has been amplified thanks to the mounting electronic health records. It influences the employment of cloud outsourcing methodology. Data outsourced to the cloud space must be highly secured. For this, the paper presents a DKS-CWH algorithm that is based on a dual kernal support vector (DKS) and crossover-based wild horse optimization algorithm. In this paper, the input grayscale images are gathered from the medical MINST dataset which includes 58,954 images comprising six classes of CXR (chest X-ray), breast MRI, abdomen CT, chest CT, hand (hand X-ray), and head CT. The classification and feature extraction processes are performed at the cloud layer using the DKS-CWH algorithm. The hyperparameters of the DKS approach are optimized with the crossover-based WHO algorithm. The performance evaluation involves analyzing its effectiveness according to prominent metrics such as precision, accuracy, recall, and F1-score and comparing the outputs with the other competent methods. The results showed the DKS-CWH model offered robust performance with 97% accuracy.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.