The curing kinetics and properties of self-healing and thermally conductive polymeric composites based on ethylene vinyl acetate copolymer filled with nano alumina

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Plastic Film & Sheeting Pub Date : 2024-05-28 DOI:10.1177/87560879241251901
Hongyi Lin, Yuchi Zhang, Renjin Gao, Liwei Wang, Jianrong Xia, Hanyu Xue
{"title":"The curing kinetics and properties of self-healing and thermally conductive polymeric composites based on ethylene vinyl acetate copolymer filled with nano alumina","authors":"Hongyi Lin, Yuchi Zhang, Renjin Gao, Liwei Wang, Jianrong Xia, Hanyu Xue","doi":"10.1177/87560879241251901","DOIUrl":null,"url":null,"abstract":"We have investigated a self-healing thermally conductive Ethylene-vinyl acetate (EVA) hot melt adhesive (NAEDS, which denotes the addition of nano-alumina and disulfide bonded EVA hot melt adhesives) that can be used to effectively solve adhesive layer separation problem in photovoltaic (PV) modules and the difficulty of recycling. More specifically, we used diallyl disulfide as a cross-linking agent for EVA and alumina nanofillers as a reinforcing phase. The nano alumina filler gave the EVA better thermal conductivity. We used FTIR, SEM, and DSC to characterize and analyze NAEDS properties. The disulfide bonds in NAEDS underwent a rearrangement reaction under ultraviolet light, resulting in the self-healing of the resin (self-healing efficiency of 78.8%). The added nano alumina not only reduced the resin curing activation energy, improving its curing performance but also enhanced its thermal conductivity, achieving a 2.61 W/(m*k) thermal conductivity coefficient. The overall NAEDS performance is improved.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879241251901","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

We have investigated a self-healing thermally conductive Ethylene-vinyl acetate (EVA) hot melt adhesive (NAEDS, which denotes the addition of nano-alumina and disulfide bonded EVA hot melt adhesives) that can be used to effectively solve adhesive layer separation problem in photovoltaic (PV) modules and the difficulty of recycling. More specifically, we used diallyl disulfide as a cross-linking agent for EVA and alumina nanofillers as a reinforcing phase. The nano alumina filler gave the EVA better thermal conductivity. We used FTIR, SEM, and DSC to characterize and analyze NAEDS properties. The disulfide bonds in NAEDS underwent a rearrangement reaction under ultraviolet light, resulting in the self-healing of the resin (self-healing efficiency of 78.8%). The added nano alumina not only reduced the resin curing activation energy, improving its curing performance but also enhanced its thermal conductivity, achieving a 2.61 W/(m*k) thermal conductivity coefficient. The overall NAEDS performance is improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于填充纳米氧化铝的乙烯-醋酸乙烯共聚物的自愈合导热聚合物复合材料的固化动力学和性能
我们研究了一种自愈合导热乙烯-醋酸乙烯(EVA)热熔胶(NAEDS,表示添加纳米氧化铝和二硫化物粘合的 EVA 热熔胶),它可用于有效解决光伏(PV)模块中的胶层分离问题和回收困难问题。具体而言,我们使用二烯丙基二硫化物作为 EVA 的交联剂,并使用纳米氧化铝填料作为增强相。纳米氧化铝填料使 EVA 具有更好的导热性。我们使用傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和电热恒温分析仪(DSC)来表征和分析 NAEDS 的特性。在紫外线照射下,NAEDS中的二硫键发生了重排反应,从而实现了树脂的自愈合(自愈合效率为78.8%)。添加的纳米氧化铝不仅降低了树脂的固化活化能,改善了其固化性能,还提高了其导热性能,导热系数达到 2.61 W/(m*k)。NAEDS 的整体性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effects of Lithium bis(trifluoromethanesulfonyl)imide loading on thermal, mechanical and ion conducting properties of specialty interlayer films derived from scrap Polyvinyl butyral Industry News Vol 40(3) Making the most from measuring counts Coating of micropolar fluid during non-isothermal reverse roll coating phenomena Partially phosphorylated poly(vinyl alcohol) – A promising candidate in corrosion protection of magnesium for the biomedical industry?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1