Influence of FGM coating on the dynamic fracture behavior of multiple cracks in a homogeneous half-plane under in-plane loading

IF 2.2 3区 工程技术 Q2 MECHANICS Archive of Applied Mechanics Pub Date : 2024-05-27 DOI:10.1007/s00419-024-02620-7
R. Bagheri
{"title":"Influence of FGM coating on the dynamic fracture behavior of multiple cracks in a homogeneous half-plane under in-plane loading","authors":"R. Bagheri","doi":"10.1007/s00419-024-02620-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the stationary interacting of multiple cracks within both the interface and the embedded layer of a homogeneous half-plane coated with a functionally graded material (FGM) under elastodynamic in-plane loading. Leveraging the distributed dislocation technique, this research provides a novel framework for exploring the intricate fracture mechanics of this specific material configuration. To accurately quantify dynamic stress intensity factors (DSIFs) within this complex medium, the study employs the method of integral transformations. This approach involves strategically positioning Volterra-type climb and glide edge dislocations at the critical interface between the half-plane and the FG coating. To characterize the traction vector along the surfaces of multiple cracks, we construct systems of Cauchy singular integral equations using dislocation solutions. By numerically solving these equations, we precisely determine the dislocation density along the crack surfaces. This critical information then enables exceptionally accurate computation of DSIFs at the crack tips. This study's numerical findings reveal how material gradient characteristics, Poisson's ratio, excitation frequency, coating thickness, crack length and crack interactions collectively govern the DSIFs of graded coatings. These results clarify the complex mechanics of these materials under elastodynamic loading.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 7","pages":"1891 - 1910"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02620-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the stationary interacting of multiple cracks within both the interface and the embedded layer of a homogeneous half-plane coated with a functionally graded material (FGM) under elastodynamic in-plane loading. Leveraging the distributed dislocation technique, this research provides a novel framework for exploring the intricate fracture mechanics of this specific material configuration. To accurately quantify dynamic stress intensity factors (DSIFs) within this complex medium, the study employs the method of integral transformations. This approach involves strategically positioning Volterra-type climb and glide edge dislocations at the critical interface between the half-plane and the FG coating. To characterize the traction vector along the surfaces of multiple cracks, we construct systems of Cauchy singular integral equations using dislocation solutions. By numerically solving these equations, we precisely determine the dislocation density along the crack surfaces. This critical information then enables exceptionally accurate computation of DSIFs at the crack tips. This study's numerical findings reveal how material gradient characteristics, Poisson's ratio, excitation frequency, coating thickness, crack length and crack interactions collectively govern the DSIFs of graded coatings. These results clarify the complex mechanics of these materials under elastodynamic loading.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGM 涂层对平面内加载下均质半平面多裂缝动态断裂行为的影响
本研究探讨了在弹性动力面内加载条件下,涂有功能分级材料(FGM)的均质半平面的界面和嵌入层内多条裂纹的静态相互作用。这项研究利用分布式位错技术,为探索这种特殊材料结构的复杂断裂力学提供了一个新的框架。为了准确量化这种复杂介质中的动态应力强度因子(DSIF),研究采用了积分变换方法。这种方法包括在半平面和 FG 涂层之间的临界界面上战略性地定位 Volterra 型爬行和滑行边缘位错。为了描述沿多条裂缝表面的牵引矢量,我们利用位错解构建了考奇奇异积分方程组。通过对这些方程进行数值求解,我们精确地确定了沿裂纹表面的位错密度。有了这些关键信息,我们就能异常精确地计算出裂纹尖端的位错密度。这项研究的数值结果揭示了材料梯度特性、泊松比、激励频率、涂层厚度、裂纹长度和裂纹相互作用如何共同影响分级涂层的 DSIF。这些结果阐明了这些材料在弹性动力加载下的复杂力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
期刊最新文献
Rapid heating of FGM plates resting on elastic foundation Large deformation modeling of flexible piezoelectric materials Dynamic statistical damage constitutive model based on the Hoek–Brown criterion at high strain rates Correction to: Microstructure evolution and fluid transport in porous media: a formal asymptotic expansions approach New benchmark free vibration solutions of passive constrained layer damping beams by the symplectic method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1