Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing

Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran
{"title":"Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing","authors":"Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran","doi":"10.1002/sstr.202400104","DOIUrl":null,"url":null,"abstract":"Most paints contain pigments that absorb light and fade over time. A robust alternative can be found in nature, where structural coloration arises from the interference of light with submicron features. Plant-derived, cellulose nanocrystals (CNCs) mimic these features by self-assembling into a cholesteric liquid crystal that exhibits structural coloration when dried. While much research has been done on CNCs in aqueous solutions, less is known about transferring CNCs to apolar solvents that are widely employed in paints. This study uses a common surfactant in agricultural and industrial products to suspend CNCs in toluene . Surprisingly, a stable liquid crystal phase is formed within hours, even with concentrations of up to 50 wt%. Evaporating the apolar CNC suspensions results in photonic films with peak wavelengths ranging from 660 to 920 nm. The resulting flexible films have variable mechanical properties with surfactant content, allowing for an optical response with applied force. The films also act as humidity sensors, with increasing relative humidity swelling the films, yielding a redshift in the reflected wavelength. With the addition of a single surfactant, CNCs can be made compatible with existing production methods of industrial coatings, while improving the strength and responsiveness of structurally colored films to external stimuli.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most paints contain pigments that absorb light and fade over time. A robust alternative can be found in nature, where structural coloration arises from the interference of light with submicron features. Plant-derived, cellulose nanocrystals (CNCs) mimic these features by self-assembling into a cholesteric liquid crystal that exhibits structural coloration when dried. While much research has been done on CNCs in aqueous solutions, less is known about transferring CNCs to apolar solvents that are widely employed in paints. This study uses a common surfactant in agricultural and industrial products to suspend CNCs in toluene . Surprisingly, a stable liquid crystal phase is formed within hours, even with concentrations of up to 50 wt%. Evaporating the apolar CNC suspensions results in photonic films with peak wavelengths ranging from 660 to 920 nm. The resulting flexible films have variable mechanical properties with surfactant content, allowing for an optical response with applied force. The films also act as humidity sensors, with increasing relative humidity swelling the films, yielding a redshift in the reflected wavelength. With the addition of a single surfactant, CNCs can be made compatible with existing production methods of industrial coatings, while improving the strength and responsiveness of structurally colored films to external stimuli.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于压力和湿度传感的表面活性剂功能化纤维素纳米晶体柔性光子薄膜
大多数油漆中的颜料都会吸收光线并随着时间的推移而褪色。在自然界中可以找到一种可靠的替代方法,即通过亚微米特征对光的干扰产生结构色。源于植物的纤维素纳米晶体(CNC)通过自组装成胆固醇液晶来模拟这些特征,这种液晶在干燥时会呈现结构色。有关水溶液中的 CNC 的研究很多,但将 CNC 转移到涂料中广泛使用的非极性溶剂中的研究却较少。本研究使用一种农业和工业产品中常见的表面活性剂将 CNC 悬浮于甲苯中。令人惊讶的是,即使浓度高达 50 wt%,也能在数小时内形成稳定的液晶相。将无极性 CNC 悬浮液蒸发后可形成峰值波长为 660 纳米到 920 纳米的光子薄膜。由此产生的柔性薄膜具有随表面活性剂含量变化而变化的机械性能,从而可以在外力作用下产生光学响应。薄膜还可用作湿度传感器,相对湿度的增加会使薄膜膨胀,从而导致反射波长的红移。只需添加一种表面活性剂,CNC 就能与现有的工业涂料生产方法兼容,同时还能提高有色结构薄膜的强度和对外部刺激的反应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1