Flavian Emmanuel Sapnken, Benjamin Salomon Diboma, Ali Khalili Tazehkandgheshlagh, Mohammed Hamaidi, Prosper Gopdjim Noumo, Yong Wang, Jean Gaston Tamba
{"title":"Improving electricity demand forecasting accuracy: a novel grey-genetic programming approach using GMC(1,N) and residual sign estimation","authors":"Flavian Emmanuel Sapnken, Benjamin Salomon Diboma, Ali Khalili Tazehkandgheshlagh, Mohammed Hamaidi, Prosper Gopdjim Noumo, Yong Wang, Jean Gaston Tamba","doi":"10.1108/gs-01-2024-0011","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper addresses the challenges associated with forecasting electricity consumption using limited data without making prior assumptions on normality. The study aims to enhance the predictive performance of grey models by proposing a novel grey multivariate convolution model incorporating residual modification and residual genetic programming sign estimation.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The research begins by constructing a novel grey multivariate convolution model and demonstrates the utilization of genetic programming to enhance prediction accuracy by exploiting the signs of forecast residuals. Various statistical criteria are employed to assess the predictive performance of the proposed model. The validation process involves applying the model to real datasets spanning from 2001 to 2019 for forecasting annual electricity consumption in Cameroon.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The novel hybrid model outperforms both grey and non-grey models in forecasting annual electricity consumption. The model's performance is evaluated using MAE, MSD, RMSE, and R<sup>2</sup>, yielding values of 0.014, 101.01, 10.05, and 99% respectively. Results from validation cases and real-world scenarios demonstrate the feasibility and effectiveness of the proposed model. The combination of genetic programming and grey convolution model offers a significant improvement over competing models. Notably, the dynamic adaptability of genetic programming enhances the model's accuracy by mimicking expert systems' knowledge and decision-making, allowing for the identification of subtle changes in electricity demand patterns.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper introduces a novel grey multivariate convolution model that incorporates residual modification and genetic programming sign estimation. The application of genetic programming to enhance prediction accuracy by leveraging forecast residuals represents a unique approach. The study showcases the superiority of the proposed model over existing grey and non-grey models, emphasizing its adaptability and expert-like ability to learn and refine forecasting rules dynamically. The potential extension of the model to other forecasting fields is also highlighted, indicating its versatility and applicability beyond electricity consumption prediction in Cameroon.</p><!--/ Abstract__block -->","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"98 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/gs-01-2024-0011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper addresses the challenges associated with forecasting electricity consumption using limited data without making prior assumptions on normality. The study aims to enhance the predictive performance of grey models by proposing a novel grey multivariate convolution model incorporating residual modification and residual genetic programming sign estimation.
Design/methodology/approach
The research begins by constructing a novel grey multivariate convolution model and demonstrates the utilization of genetic programming to enhance prediction accuracy by exploiting the signs of forecast residuals. Various statistical criteria are employed to assess the predictive performance of the proposed model. The validation process involves applying the model to real datasets spanning from 2001 to 2019 for forecasting annual electricity consumption in Cameroon.
Findings
The novel hybrid model outperforms both grey and non-grey models in forecasting annual electricity consumption. The model's performance is evaluated using MAE, MSD, RMSE, and R2, yielding values of 0.014, 101.01, 10.05, and 99% respectively. Results from validation cases and real-world scenarios demonstrate the feasibility and effectiveness of the proposed model. The combination of genetic programming and grey convolution model offers a significant improvement over competing models. Notably, the dynamic adaptability of genetic programming enhances the model's accuracy by mimicking expert systems' knowledge and decision-making, allowing for the identification of subtle changes in electricity demand patterns.
Originality/value
This paper introduces a novel grey multivariate convolution model that incorporates residual modification and genetic programming sign estimation. The application of genetic programming to enhance prediction accuracy by leveraging forecast residuals represents a unique approach. The study showcases the superiority of the proposed model over existing grey and non-grey models, emphasizing its adaptability and expert-like ability to learn and refine forecasting rules dynamically. The potential extension of the model to other forecasting fields is also highlighted, indicating its versatility and applicability beyond electricity consumption prediction in Cameroon.