Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2024-10-01 Epub Date: 2024-05-29 DOI:10.1007/s10529-024-03498-9
Q S Fan, H J Lin, Y J Hu, J Jin, H H Yan, R Q Zhang
{"title":"Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.","authors":"Q S Fan, H J Lin, Y J Hu, J Jin, H H Yan, R Q Zhang","doi":"10.1007/s10529-024-03498-9","DOIUrl":null,"url":null,"abstract":"<p><p>Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates (Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9-63.0% reduction) and conidial germination (17.6-96.3% reduction) of B. cinerea, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B. cinerea, completely protected the leaves from B. cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B. cinerea, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T. asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B. cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen's plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"751-766"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03498-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates (Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9-63.0% reduction) and conidial germination (17.6-96.3% reduction) of B. cinerea, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B. cinerea, completely protected the leaves from B. cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B. cinerea, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T. asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B. cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen's plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用熏蒸剂毛霉菌属生物防治草莓灰霉病并延长水果货架期
目的 筛选产生高活性挥发性有机化合物(VOCs)的毛霉菌分离株,以对抗由灰霉病菌引起的草莓灰霉病,并探索它们对病原体的拮抗作用模式。由九个毛霉分离株(Trichoderma atroviride T1 和 T3;Trichoderma harzianum T2、T4 和 T5;T6、T7、T8 和 T9,本研究中被鉴定为 Asperellum 毛霉)产生的 VOCs 能显著抑制菌丝生长(减少 13.抑制率最高的是 T7 的 VOCs;在封闭空间中,T7 的 VOCs 对 B. cinerea 的菌丝生长(抑制率为 13.9-63.0% )和分生孢子萌发(抑制率为 17.6-96.3% )的抑制率分别为 76.9%和100%,延长了草莓果实在灰霉病菌存在下的货架期3天,完全保护了叶片免受灰霉病菌的感染;T7的挥发性代谢产物破坏了灰霉病菌细胞膜的通透性和完整性,从而抑制了菌丝的生长和分生孢子的萌发。气相色谱-质谱(GC-MS)分析表明,挥发性有机化合物中含有 23 种潜在化合物,其中大部分属于烯类、醇类和酯类,包括 PEA 和 6PP。Asperellum T7 对 B. cinerea 的菌丝生长特别是分生孢子萌发具有很高的生物熏蒸活性,从而保护草莓果实和叶片免受灰霉病的侵害,其作用是破坏病原体的质膜,导致细胞质泄漏,是一种潜在的生物熏蒸剂,可用于控制草莓采前和采后灰霉病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation. A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae. Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus. Multiple genes deletion based on Cre-loxP marker-less gene deletion system for the strains from the genus of Pectobacterium. Toxicants improve glycerol production in the fermentation of undetoxified hydrolysate by Candida glycerinogenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1