Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-12-01 Epub Date: 2024-05-30 DOI:10.1007/s11336-024-09978-1
Sainan Xu, Jing Lu, Jiwei Zhang, Chun Wang, Gongjun Xu
{"title":"Optimizing Large-Scale Educational Assessment with a \"Divide-and-Conquer\" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models.","authors":"Sainan Xu, Jing Lu, Jiwei Zhang, Chun Wang, Gongjun Xu","doi":"10.1007/s11336-024-09978-1","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel \"divide- and-conquer\" parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1119-1147"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09978-1","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel "divide- and-conquer" parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 "分而治之 "策略优化大规模教育评估:快速高效的 IRT 模型分布式贝叶斯推理。
随着大规模教育测试和评估日益受到关注,处理大量反应数据的能力变得至关重要。目前项目反应理论(IRT)中的估计方法尽管精度很高,但在处理大规模数据时往往会带来相当大的计算负担,导致计算速度下降。本研究介绍了一种基于 Wasserstein 后验近似概念的新型 "分而治之 "并行算法,旨在提高计算速度的同时保持准确的参数估计。该算法可以并行地从分段数据子集中提取参数,然后通过瓦瑟斯坦后验近似合并这些参数。在一定的规则性假设下,通过渐近最优性为该算法提供了理论支持。利用国际学生评估项目的真实数据进行了实际验证。最终,这项研究提出了一种管理教育大数据的变革方法,提供了一种可扩展、高效和精确的替代方案,有望重新定义教育评估的传统做法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Remarks from the Editor-in-Chief. Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models. Ordinal Outcome State-Space Models for Intensive Longitudinal Data. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1