Thaise Ricardo de Freitas , Silvia Hess , Paul E. Renaud , Peter Appleby , Elisabeth Alve
{"title":"Drivers of organic carbon distribution and accumulation in the northern Barents Sea","authors":"Thaise Ricardo de Freitas , Silvia Hess , Paul E. Renaud , Peter Appleby , Elisabeth Alve","doi":"10.1016/j.pocean.2024.103286","DOIUrl":null,"url":null,"abstract":"<div><p>Sedimentary properties and accumulation rates on the continental shelf and in the deep sea reflect temporal oceanographic, biological and chemical processes occurring in the water column and the sediment surface. We used the radionuclides <sup>210</sup>Pb, <sup>226</sup>Ra, and <sup>137</sup>Cs activities to estimate sedimentation rates during the last century at nine stations in the northern Barents Sea region. Elemental (C, N) and stable isotopic composition (δ<sup>13</sup>C, δ<sup>15</sup>N) were also analysed from the nine stations sampled in August 2018, and, for five other stations sampled in August and December 2019, and in March and May 2021. Sediment accumulation rates varied between 130 and 1 410 g m<sup>−2</sup> y<sup>−1</sup>. The < 63 μm normalized total organic carbon (TOC<sub>63</sub>) and the total nitrogen from the sediment surface varied between 0.90–2.56 % and 0.13–0.33 %, respectively. Ice-free shelf stations had higher TOC<sub>63</sub> and possibly fresher organic matter (high δ<sup>13</sup>C, low δ<sup>15</sup>N) than ice-covered more northern stations. The opposite trend was observed for total inorganic carbon. We found that these trends in biogeochemical parameters were spatially structured by the winter sea ice concentration and biological production differences, and exhibited a south-north separation of the Polar Front region. The low and stable organic carbon accumulation rate (1.7–13.4 g C<sub>org</sub> m<sup>-2</sup> y<sup>−1</sup>; AR<sub>toc</sub>) is a function of slow sedimentation rates, and high degradation and residence time in the water column and at the sediment–water interface. Overall, the AR<sub>toc</sub> has been stable for the past 100 years, with a slight increase from the early 1970s to the present at the shelf and slope stations. Our results highlight that spatial scales of variability of the studied sedimentary parameters are linked to spatial patterns of important environmental variables (e.g., chlorophyll-<em>a</em>, sea ice concentration) in the region. In contrast, no seasonal differences were observed in the sediment parameters of revisited stations, and the dated sediment geochemical profiles did not exhibit substantial longer-term variation. This means that climate-induced changes in variables that modify the sedimentary geochemistry of the environment may affect benthic community activity and structure before leaving a record in AR<sub>toc</sub>.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"225 ","pages":"Article 103286"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124000922/pdfft?md5=92db80297d8599ea509d5fa9b57581ee&pid=1-s2.0-S0079661124000922-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000922","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Sedimentary properties and accumulation rates on the continental shelf and in the deep sea reflect temporal oceanographic, biological and chemical processes occurring in the water column and the sediment surface. We used the radionuclides 210Pb, 226Ra, and 137Cs activities to estimate sedimentation rates during the last century at nine stations in the northern Barents Sea region. Elemental (C, N) and stable isotopic composition (δ13C, δ15N) were also analysed from the nine stations sampled in August 2018, and, for five other stations sampled in August and December 2019, and in March and May 2021. Sediment accumulation rates varied between 130 and 1 410 g m−2 y−1. The < 63 μm normalized total organic carbon (TOC63) and the total nitrogen from the sediment surface varied between 0.90–2.56 % and 0.13–0.33 %, respectively. Ice-free shelf stations had higher TOC63 and possibly fresher organic matter (high δ13C, low δ15N) than ice-covered more northern stations. The opposite trend was observed for total inorganic carbon. We found that these trends in biogeochemical parameters were spatially structured by the winter sea ice concentration and biological production differences, and exhibited a south-north separation of the Polar Front region. The low and stable organic carbon accumulation rate (1.7–13.4 g Corg m-2 y−1; ARtoc) is a function of slow sedimentation rates, and high degradation and residence time in the water column and at the sediment–water interface. Overall, the ARtoc has been stable for the past 100 years, with a slight increase from the early 1970s to the present at the shelf and slope stations. Our results highlight that spatial scales of variability of the studied sedimentary parameters are linked to spatial patterns of important environmental variables (e.g., chlorophyll-a, sea ice concentration) in the region. In contrast, no seasonal differences were observed in the sediment parameters of revisited stations, and the dated sediment geochemical profiles did not exhibit substantial longer-term variation. This means that climate-induced changes in variables that modify the sedimentary geochemistry of the environment may affect benthic community activity and structure before leaving a record in ARtoc.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.