Growth and Photoresponse of WS2/MoSe2 Lateral Heterostructure

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-05-30 DOI:10.1002/aelm.202300842
Mingyuan Sheng, Xi Chang, Xiaojun Mao, Yang Gao, Xiaoyang Xuan, Haifen Xie, Haichuan Mu, Yueping Niu, Shangqing Gong, Min Qian
{"title":"Growth and Photoresponse of WS2/MoSe2 Lateral Heterostructure","authors":"Mingyuan Sheng,&nbsp;Xi Chang,&nbsp;Xiaojun Mao,&nbsp;Yang Gao,&nbsp;Xiaoyang Xuan,&nbsp;Haifen Xie,&nbsp;Haichuan Mu,&nbsp;Yueping Niu,&nbsp;Shangqing Gong,&nbsp;Min Qian","doi":"10.1002/aelm.202300842","DOIUrl":null,"url":null,"abstract":"<p>The heterostructure of two-dimensional transition metal dichalcogenide (TMDC) has garnered extensive attention, for the junction is the building block of a semiconductor device. However, the controllable synthesis of TMDC heterostructures of different transition metals and different chalcogen elements is still challenging because of the etching by atom substitution during the chemical vapor deposition (CVD) process. Here, a Mo─O transition state with lower energy is introduced to the edge of an as-grown MoSe<sub>2</sub> by using ultraviolet ozone treatment, to prevent the fast atom substitution of S for Se, and enable a stable growth of WS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructure. A polymer-free transfer method is developed based on capillary interaction, and atomic structure characterization confirms the high-quality WS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructure. The WS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructure photodetector exhibits superior photoresponse compared to WS<sub>2</sub> and MoSe<sub>2</sub> devices, with a responsivity of 21.87 A W<sup>−1</sup> and a detectivity of 4.2 × 10<sup>12</sup> Jones at 350 nm. Kelvin probe force microscopy result reveals that the built-in electric field within the heterojunction facilitates the effective separation of photogenerated electron-hole pairs. This study carries profound implications for the CVD growth and polymer-free transfer of TMDC heterostructures in photodetector applications.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 8","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300842","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The heterostructure of two-dimensional transition metal dichalcogenide (TMDC) has garnered extensive attention, for the junction is the building block of a semiconductor device. However, the controllable synthesis of TMDC heterostructures of different transition metals and different chalcogen elements is still challenging because of the etching by atom substitution during the chemical vapor deposition (CVD) process. Here, a Mo─O transition state with lower energy is introduced to the edge of an as-grown MoSe2 by using ultraviolet ozone treatment, to prevent the fast atom substitution of S for Se, and enable a stable growth of WS2/MoSe2 lateral heterostructure. A polymer-free transfer method is developed based on capillary interaction, and atomic structure characterization confirms the high-quality WS2/MoSe2 lateral heterostructure. The WS2/MoSe2 lateral heterostructure photodetector exhibits superior photoresponse compared to WS2 and MoSe2 devices, with a responsivity of 21.87 A W−1 and a detectivity of 4.2 × 1012 Jones at 350 nm. Kelvin probe force microscopy result reveals that the built-in electric field within the heterojunction facilitates the effective separation of photogenerated electron-hole pairs. This study carries profound implications for the CVD growth and polymer-free transfer of TMDC heterostructures in photodetector applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WS2/MoSe2 侧向异质结构的生长与光响应
二维过渡金属二卤化物(TMDC)的异质结构引起了广泛关注,因为结是半导体器件的基石。然而,由于化学气相沉积(CVD)过程中的原子置换蚀刻,可控合成不同过渡金属和不同查尔根元素的 TMDC 异质结构仍具有挑战性。在这里,通过紫外线臭氧处理,将具有较低能量的 Mo─O 过渡态引入到已生长的 MoSe2 边缘,以防止 S 原子快速置换为 Se 原子,从而实现 WS2/MoSe2 横向异质结构的稳定生长。基于毛细管相互作用开发了一种无聚合物转移方法,原子结构表征证实了高质量的 WS2/MoSe2 横向异质结构。与 WS2 和 MoSe2 器件相比,WS2/MoSe2 横向异质结构光电探测器具有更优越的光响应性能,在 350 纳米波长处的响应率为 21.87 A W-1,探测率为 4.2 × 1012 Jones。开尔文探针力显微镜结果显示,异质结内的内置电场促进了光生电子-空穴对的有效分离。这项研究对光电探测器应用中 TMDC 异质结构的 CVD 生长和无聚合物转移具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1