{"title":"Dexmedetomidine improves mitophagy and pyroptosis through the ALKBH5/FUNDC1 axis during epidural-related maternal fever","authors":"Fei Xiao , Hanqing Yao , Jing Qian , Jiayue Huang , Guangfa Xia","doi":"10.1016/j.advms.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Epidural analgesia has emerged as a commonly used method for relieving labor pain. However, epidural-related maternal fever (ERMF) is characterized by a high occurrence rate and can have detrimental consequences for the well-being of both the mother and the fetus. This study aimed to investigate the functional role and underlying mechanism of dexmedetomidine (DEX) in ERMF.</p></div><div><h3>Materials and methods</h3><p>Ropivacaine (ROP)-induced human umbilical vein endothelial cells (HUVECs) were treated with DEX and/or transfected with ALKBH5 or FUNDC1 overexpression plasmid. qPCR and Western blot were adopted for mitophagy and pyroptosis marker protein detection. Autophagosomes were observed through electron microscopy, Caspase-1/PI double-positive cells were determined using flow cytometry. Inflammation-related factors were quantified using ELISA. The N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification of FUNDC1 mRNA was examined using methylated RNA immunoprecipitation (MeRIP) and the binding between ALKBH5 and FUNDC1 mRNA was confirmed by RNA immunoprecipitation (RIP).</p></div><div><h3>Results</h3><p>In ROP-induced HUVECs, there was a significant upregulation in ALKBH5 and FUNDC1, resulting in a notable increase in inflammation, pyroptosis, and mitophagy. The administration of DEX demonstrated the ability to alleviate ROP-induced pyroptosis and promote protective mitophagy. Interestingly, DEX treatment significantly reduced the interaction between ALKBH5 and FUNDC1 mRNA, while simultaneously increasing the m<sup>6</sup>A level of FUNDC1 mRNA in ROP-treated cells. Moreover, the overexpression of FUNDC1 partially reversed the effects of ALKBH5 overexpression on mitophagy and pyroptosis in HUVECs.</p></div><div><h3>Conclusions</h3><p>DEX can promote mitophagy and inhibit pyroptosis through the ALKBH5/FUNDC1 axis in ERMF, indicating its potential as a therapeutic strategy for clinical ERMF treatment.</p></div>","PeriodicalId":7347,"journal":{"name":"Advances in medical sciences","volume":"69 2","pages":"Pages 272-280"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in medical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1896112624000312","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Epidural analgesia has emerged as a commonly used method for relieving labor pain. However, epidural-related maternal fever (ERMF) is characterized by a high occurrence rate and can have detrimental consequences for the well-being of both the mother and the fetus. This study aimed to investigate the functional role and underlying mechanism of dexmedetomidine (DEX) in ERMF.
Materials and methods
Ropivacaine (ROP)-induced human umbilical vein endothelial cells (HUVECs) were treated with DEX and/or transfected with ALKBH5 or FUNDC1 overexpression plasmid. qPCR and Western blot were adopted for mitophagy and pyroptosis marker protein detection. Autophagosomes were observed through electron microscopy, Caspase-1/PI double-positive cells were determined using flow cytometry. Inflammation-related factors were quantified using ELISA. The N6-methyladenosine (m6A) modification of FUNDC1 mRNA was examined using methylated RNA immunoprecipitation (MeRIP) and the binding between ALKBH5 and FUNDC1 mRNA was confirmed by RNA immunoprecipitation (RIP).
Results
In ROP-induced HUVECs, there was a significant upregulation in ALKBH5 and FUNDC1, resulting in a notable increase in inflammation, pyroptosis, and mitophagy. The administration of DEX demonstrated the ability to alleviate ROP-induced pyroptosis and promote protective mitophagy. Interestingly, DEX treatment significantly reduced the interaction between ALKBH5 and FUNDC1 mRNA, while simultaneously increasing the m6A level of FUNDC1 mRNA in ROP-treated cells. Moreover, the overexpression of FUNDC1 partially reversed the effects of ALKBH5 overexpression on mitophagy and pyroptosis in HUVECs.
Conclusions
DEX can promote mitophagy and inhibit pyroptosis through the ALKBH5/FUNDC1 axis in ERMF, indicating its potential as a therapeutic strategy for clinical ERMF treatment.
期刊介绍:
Advances in Medical Sciences is an international, peer-reviewed journal that welcomes original research articles and reviews on current advances in life sciences, preclinical and clinical medicine, and related disciplines.
The Journal’s primary aim is to make every effort to contribute to progress in medical sciences. The strive is to bridge laboratory and clinical settings with cutting edge research findings and new developments.
Advances in Medical Sciences publishes articles which bring novel insights into diagnostic and molecular imaging, offering essential prior knowledge for diagnosis and treatment indispensable in all areas of medical sciences. It also publishes articles on pathological sciences giving foundation knowledge on the overall study of human diseases. Through its publications Advances in Medical Sciences also stresses the importance of pharmaceutical sciences as a rapidly and ever expanding area of research on drug design, development, action and evaluation contributing significantly to a variety of scientific disciplines.
The journal welcomes submissions from the following disciplines:
General and internal medicine,
Cancer research,
Genetics,
Endocrinology,
Gastroenterology,
Cardiology and Cardiovascular Medicine,
Immunology and Allergy,
Pathology and Forensic Medicine,
Cell and molecular Biology,
Haematology,
Biochemistry,
Clinical and Experimental Pathology.