Embracing exascale computing in nucleic acid simulations

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2024-05-29 DOI:10.1016/j.sbi.2024.102847
Jun Li, Yuanzhe Zhou, Shi-Jie Chen
{"title":"Embracing exascale computing in nucleic acid simulations","authors":"Jun Li,&nbsp;Yuanzhe Zhou,&nbsp;Shi-Jie Chen","doi":"10.1016/j.sbi.2024.102847","DOIUrl":null,"url":null,"abstract":"<div><p>This mini-review reports the recent advances in biomolecular simulations, particularly for nucleic acids, and provides the potential effects of the emerging exascale computing on nucleic acid simulations, emphasizing the need for advanced computational strategies to fully exploit this technological frontier. Specifically, we introduce recent breakthroughs in computer architectures for large-scale biomolecular simulations and review the simulation protocols for nucleic acids regarding force fields, enhanced sampling methods, coarse-grained models, and interactions with ligands. We also explore the integration of machine learning methods into simulations, which promises to significantly enhance the predictive modeling of biomolecules and the analysis of complex data generated by the exascale simulations. Finally, we discuss the challenges and perspectives for biomolecular simulations as we enter the dawning exascale computing era.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000745","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This mini-review reports the recent advances in biomolecular simulations, particularly for nucleic acids, and provides the potential effects of the emerging exascale computing on nucleic acid simulations, emphasizing the need for advanced computational strategies to fully exploit this technological frontier. Specifically, we introduce recent breakthroughs in computer architectures for large-scale biomolecular simulations and review the simulation protocols for nucleic acids regarding force fields, enhanced sampling methods, coarse-grained models, and interactions with ligands. We also explore the integration of machine learning methods into simulations, which promises to significantly enhance the predictive modeling of biomolecules and the analysis of complex data generated by the exascale simulations. Finally, we discuss the challenges and perspectives for biomolecular simulations as we enter the dawning exascale computing era.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在核酸模拟中采用超大规模计算。
这篇微型综述报告了生物分子模拟,特别是核酸模拟的最新进展,并介绍了新兴的超大规模计算对核酸模拟的潜在影响,强调需要先进的计算策略来充分利用这一技术前沿。具体来说,我们介绍了用于大规模生物分子模拟的计算机架构的最新突破,并回顾了核酸的模拟协议,包括力场、增强采样方法、粗粒度模型以及与配体的相互作用。我们还探讨了将机器学习方法整合到模拟中的问题,这有望显著增强生物分子的预测建模和对超大规模模拟产生的复杂数据的分析。最后,我们讨论了生物分子模拟在进入即将到来的超大规模计算时代时所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
The mechano-chemistry of a viral genome packaging motor Characterizing protein-protein interactions with thermal proteome profiling Retraction notice to “Liquid-EM goes viral – visualizing structure and dynamics” [Curr Opin Struct Biol 75 (August 2022) 102426] Non-canonical amino acids for site-directed spin labeling of membrane proteins Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1