首页 > 最新文献

Current opinion in structural biology最新文献

英文 中文
Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships 生物化学和遗传学正在结合在一起,以提高我们对基因型与表型关系的理解。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.sbi.2024.102952
Judith Notbohm , Tina Perica
Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.
自基因组测序开始普及以来,确定基因型的具体差异如何导致疾病等复杂表型已成为生物医学的关键目标之一。预测序列变异对细胞或生物体表型的影响面临着几个挑战。首先,变异同时影响多种蛋白质特性,预测它们的综合效应非常复杂。其次,单个蛋白质变化的影响会通过细胞网络传播,而我们对细胞网络只有部分了解。在这篇综述中,我们强调了生物化学和遗传学在应对这些挑战中的重要性。此外,我们还着重介绍了一些模糊生物化学和遗传学领域界限的工作,这些工作为我们提供了基因型与表型关系的新见解。
{"title":"Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships","authors":"Judith Notbohm ,&nbsp;Tina Perica","doi":"10.1016/j.sbi.2024.102952","DOIUrl":"10.1016/j.sbi.2024.102952","url":null,"abstract":"<div><div>Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102952"},"PeriodicalIF":6.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles 内在无序蛋白质的深度学习:从改进预测到解密构象组合。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.sbi.2024.102950
Gábor Erdős, Zsuzsanna Dosztányi
Intrinsically disordered proteins (IDPs) lack a stable three-dimensional structure under physiological conditions, challenging traditional structure-based prediction methods. This review explores how modern deep learning approaches, which have revolutionized structure prediction for globular proteins, have impacted protein disorder predictions. We highlight the role of community-driven efforts in curating data and assessing state-of-the-art, which have been crucial in advancing the field. We also review state-of-the-art methods utilizing deep learning techniques, highlighting innovative approaches. We also address advancements in characterizing protein conformational ensembles directly from sequence data using novel machine learning methods.
本质无序蛋白(IDPs)在生理条件下缺乏稳定的三维结构,这对传统的基于结构的预测方法提出了挑战。本综述探讨了现代深度学习方法对蛋白质无序预测的影响,这些方法已经彻底改变了球蛋白的结构预测。我们强调了由社区推动的数据整理和最新技术评估工作的作用,这对推动该领域的发展至关重要。我们还回顾了利用深度学习技术的最新方法,重点介绍了创新方法。我们还探讨了利用新型机器学习方法直接从序列数据中鉴定蛋白质构象组合的进展。
{"title":"Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles","authors":"Gábor Erdős,&nbsp;Zsuzsanna Dosztányi","doi":"10.1016/j.sbi.2024.102950","DOIUrl":"10.1016/j.sbi.2024.102950","url":null,"abstract":"<div><div>Intrinsically disordered proteins (IDPs) lack a stable three-dimensional structure under physiological conditions, challenging traditional structure-based prediction methods. This review explores how modern deep learning approaches, which have revolutionized structure prediction for globular proteins, have impacted protein disorder predictions. We highlight the role of community-driven efforts in curating data and assessing state-of-the-art, which have been crucial in advancing the field. We also review state-of-the-art methods utilizing deep learning techniques, highlighting innovative approaches. We also address advancements in characterizing protein conformational ensembles directly from sequence data using novel machine learning methods.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102950"},"PeriodicalIF":6.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short circuit: Transcription factor addiction as a growing vulnerability in cancer 短路:转录因子成瘾是癌症中一个日益严重的弱点。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.sbi.2024.102948
Molly Davies, Maeve Boyce, Eric Conway
Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.
核心调控回路指的是由各系特异性转录因子组成的网络,它们既调控自身编码基因的表达,也调控其他转录因子的表达。这种自调节反馈回路在发育和细胞命运决定过程中协调转录组和表观基因组。这种回路在肿瘤发生过程中被劫持,导致癌细胞的命运由特异性转录因子维持。功能基因组学和化学生物学的重大进展为新一代癌症疗法铺平了道路,这些疗法旨在通过直接和间接手段破坏这种回路。在此,我们将回顾在癌症转录因子成瘾的机理认识方面取得的这些重要进展,以及蛋白水解靶向嵌合体和 CRISPR 筛选测定的出现如何引领癌症靶向治疗的新范例。
{"title":"Short circuit: Transcription factor addiction as a growing vulnerability in cancer","authors":"Molly Davies,&nbsp;Maeve Boyce,&nbsp;Eric Conway","doi":"10.1016/j.sbi.2024.102948","DOIUrl":"10.1016/j.sbi.2024.102948","url":null,"abstract":"<div><div>Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102948"},"PeriodicalIF":6.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational penalties: New insights into nucleic acid recognition 构象惩罚:核酸识别的新见解。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-09 DOI: 10.1016/j.sbi.2024.102949
Ainan Geng , Rohit Roy , Hashim M. Al-Hashimi
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
核酸与伙伴分子结合时,伴随其结构变化而产生的能量成本是对结合亲和力和特异性的重要热力学贡献,但这一贡献却未得到充分重视。本综述重点介绍了在测量构象惩罚并确定其对核酸识别、折叠和调控活动的贡献方面的最新进展。值得注意的进展包括测量和从结构上描述低密度构象状态的方法,以及在高通量、大分子组装和复杂细胞环境中获取集合信息的方法。此外,还开发了定量和预测性热力学模型,将构象惩罚与核酸-蛋白质关联和细胞活性联系起来。这些研究强调了构象惩罚在核酸识别中的关键作用。
{"title":"Conformational penalties: New insights into nucleic acid recognition","authors":"Ainan Geng ,&nbsp;Rohit Roy ,&nbsp;Hashim M. Al-Hashimi","doi":"10.1016/j.sbi.2024.102949","DOIUrl":"10.1016/j.sbi.2024.102949","url":null,"abstract":"<div><div>The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102949"},"PeriodicalIF":6.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechano-chemistry of a viral genome packaging motor 病毒基因组包装马达的机械化学原理
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1016/j.sbi.2024.102945
Joshua Pajak , Nikolai S. Prokhorov , Paul J. Jardine , Marc C. Morais
Double-stranded DNA viruses actively package their genomes into pre-assembled protein capsids using energy derived from virus-encoded ASCE ATPase ring motors. Single molecule experiments in the aughts and early 2010s demonstrated that these motors are some of the most powerful molecular motors in nature, and that the activities of individual subunits around the ATPase ring motor are highly coordinated to ensure efficient genome encapsidation. While these studies provided a comprehensive kinetic scheme describing the events that occur during packaging, the physical basis of force generation and subunit coordination remained elusive. This article reviews recent structural and computational results that have begun to illuminate the molecular basis of force generation and DNA translocation in these powerful molecular motors.
双链DNA病毒利用病毒编码的ASCE ATPase环马达产生的能量,积极地将其基因组包装到预先组装好的蛋白囊壳中。二十世纪八十年代和二十一世纪初的单分子实验证明,这些马达是自然界中一些最强大的分子马达,ATPase 环马达周围各个亚基的活动高度协调,以确保高效的基因组封装。虽然这些研究提供了一个全面的动力学方案来描述包装过程中发生的事件,但力的产生和亚基协调的物理基础仍然难以捉摸。本文回顾了最近的结构和计算成果,这些成果已开始阐明这些强大分子马达产生作用力和 DNA 转位的分子基础。
{"title":"The mechano-chemistry of a viral genome packaging motor","authors":"Joshua Pajak ,&nbsp;Nikolai S. Prokhorov ,&nbsp;Paul J. Jardine ,&nbsp;Marc C. Morais","doi":"10.1016/j.sbi.2024.102945","DOIUrl":"10.1016/j.sbi.2024.102945","url":null,"abstract":"<div><div>Double-stranded DNA viruses actively package their genomes into pre-assembled protein capsids using energy derived from virus-encoded ASCE ATPase ring motors. Single molecule experiments in the aughts and early 2010s demonstrated that these motors are some of the most powerful molecular motors in nature, and that the activities of individual subunits around the ATPase ring motor are highly coordinated to ensure efficient genome encapsidation. While these studies provided a comprehensive kinetic scheme describing the events that occur during packaging, the physical basis of force generation and subunit coordination remained elusive. This article reviews recent structural and computational results that have begun to illuminate the molecular basis of force generation and DNA translocation in these powerful molecular motors.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102945"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing protein-protein interactions with thermal proteome profiling 利用热蛋白质组图谱鉴定蛋白质与蛋白质之间的相互作用
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.sbi.2024.102946
Brian C. Searle
Thermal proteome profiling (TPP) is an innovative technique that uses the principle of protein thermal stability to identify potential protein interaction partners. Employing quantitative mass spectrometry, TPP measures protein stability across the proteome, offering a comprehensive snapshot of protein interactions in a single experiment. When studying protein-protein interactions (PPI), TPP leverages changes in apparent protein melting temperatures to identify transient and weak interactions that most traditional PPI detection methodologies struggle to measure. This review discusses current TPP methodologies, the challenges of interpreting the resulting complex datasets, and opportunities to deepen and improve PPI networks. By advancing our grasp of intricate protein interactions, TPP promises to illuminate the molecular basis of diseases and drive the discovery of novel therapeutic targets.
热蛋白质组分析(TPP)是一项创新技术,它利用蛋白质热稳定性原理来识别潜在的蛋白质相互作用伙伴。TPP 采用定量质谱法测量整个蛋白质组的蛋白质稳定性,在一次实验中提供蛋白质相互作用的全面快照。在研究蛋白质-蛋白质相互作用(PPI)时,TPP 利用表观蛋白质熔解温度的变化来识别大多数传统 PPI 检测方法难以测量的瞬时弱相互作用。本综述讨论了当前的 TPP 方法、解读由此产生的复杂数据集所面临的挑战以及深化和改进 PPI 网络的机会。通过推进我们对错综复杂的蛋白质相互作用的掌握,TPP有望阐明疾病的分子基础并推动新型治疗靶点的发现。
{"title":"Characterizing protein-protein interactions with thermal proteome profiling","authors":"Brian C. Searle","doi":"10.1016/j.sbi.2024.102946","DOIUrl":"10.1016/j.sbi.2024.102946","url":null,"abstract":"<div><div>Thermal proteome profiling (TPP) is an innovative technique that uses the principle of protein thermal stability to identify potential protein interaction partners. Employing quantitative mass spectrometry, TPP measures protein stability across the proteome, offering a comprehensive snapshot of protein interactions in a single experiment. When studying protein-protein interactions (PPI), TPP leverages changes in apparent protein melting temperatures to identify transient and weak interactions that most traditional PPI detection methodologies struggle to measure. This review discusses current TPP methodologies, the challenges of interpreting the resulting complex datasets, and opportunities to deepen and improve PPI networks. By advancing our grasp of intricate protein interactions, TPP promises to illuminate the molecular basis of diseases and drive the discovery of novel therapeutic targets.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102946"},"PeriodicalIF":6.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to “Liquid-EM goes viral – visualizing structure and dynamics” [Curr Opin Struct Biol 75 (August 2022) 102426] 液体电子显微镜(Liquid-EM)病毒式传播--结构与动力学可视化》撤稿通知 [Curr Opin Struct Biol 75 (August 2022) 102426]
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.sbi.2024.102947
Deborah F. Kelly , Liza-Anastasia DiCecco , G.M. Jonaid , William J. Dearnaley , Michael S. Spilman , Jennifer L. Gray , Madeline J. Dressel-Dukes
{"title":"Retraction notice to “Liquid-EM goes viral – visualizing structure and dynamics” [Curr Opin Struct Biol 75 (August 2022) 102426]","authors":"Deborah F. Kelly ,&nbsp;Liza-Anastasia DiCecco ,&nbsp;G.M. Jonaid ,&nbsp;William J. Dearnaley ,&nbsp;Michael S. Spilman ,&nbsp;Jennifer L. Gray ,&nbsp;Madeline J. Dressel-Dukes","doi":"10.1016/j.sbi.2024.102947","DOIUrl":"10.1016/j.sbi.2024.102947","url":null,"abstract":"","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102947"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-canonical amino acids for site-directed spin labeling of membrane proteins 用于膜蛋白定点自旋标记的非典型氨基酸。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.sbi.2024.102936
Kaitlyn Ledwitch , Georg Künze , Elleansar Okwei , Davide Sala , Jens Meiler
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme. Here, we highlight current strategies to spin-label membrane proteins through ncAAs for nuclear and electron paramagnetic resonance applications. Such advances are critical for developing bioorthogonal spin labeling schemes to achieve in-cell labeling and in-cell measurements of membrane protein conformational dynamics.
膜蛋白仍然是传统结构生物学技术的挑战目标,因为它们需要在复杂的疏水性脂质环境中才能保持适当的结构和功能。磁共振与位点定向自旋标记相结合是一种替代方法,可通过电子或核基自旋标记引入的效应提供原子级结构和动态信息。随着生物正交点击化学和基因工程非典型氨基酸(ncAAs)的出现,将自旋探针与生物大分子连接的选择范围大大拓宽,不再局限于传统的基于半胱氨酸的标记方案。在此,我们将重点介绍目前通过 ncAAs 对膜蛋白进行自旋标记以应用于核磁共振和电子顺磁共振的策略。这些进展对于开发生物正交自旋标记方案以实现细胞内标记和细胞内膜蛋白构象动态测量至关重要。
{"title":"Non-canonical amino acids for site-directed spin labeling of membrane proteins","authors":"Kaitlyn Ledwitch ,&nbsp;Georg Künze ,&nbsp;Elleansar Okwei ,&nbsp;Davide Sala ,&nbsp;Jens Meiler","doi":"10.1016/j.sbi.2024.102936","DOIUrl":"10.1016/j.sbi.2024.102936","url":null,"abstract":"<div><div>Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme. Here, we highlight current strategies to spin-label membrane proteins through ncAAs for nuclear and electron paramagnetic resonance applications. Such advances are critical for developing bioorthogonal spin labeling schemes to achieve in-cell labeling and in-cell measurements of membrane protein conformational dynamics.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102936"},"PeriodicalIF":6.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs 利用非天然碱基配对系统增强分子尺技术,探索黄病毒 RNA 的构象动力学。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.sbi.2024.102944
Jie Zhang , Xianyang Fang
RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally >200 nts). Here, we briefly review the basics of these molecular rulers, how the NaM-TPT3 unnatural base pair system empower them, and their applications to explore conformational dynamics of large RNAs, especially in the context of flavivirus RNA genome.
RNA 固有的灵活性和动态性给使用传统技术(包括 X 射线晶体学、核磁共振(NMR)光谱和冷冻电镜)描述其结构和动态带来了巨大挑战。电子顺磁共振(EPR)光谱法、X 射线散射干涉测量法(XSI)和佛斯特共振能量转移法(FRET)这三种互补的分子尺技术可以测量溶液中纳米范围内的分子内和分子间配对距离分布,它们在探索 RNA 结构和动力学方面越来越受欢迎并得到广泛应用。成功应用此类技术的前提条件是分别用自旋标签、荧光标签或金纳米粒子对 RNA 进行位点特异性标记,但这具有挑战性,尤其是对大型 RNA(一般大于 200 nts)而言。在此,我们简要回顾了这些分子标尺的基本原理、NaM-TPT3 非自然碱基对系统如何赋予它们权力,以及它们在探索大型 RNA 构象动力学方面的应用,尤其是在黄病毒 RNA 基因组方面的应用。
{"title":"Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs","authors":"Jie Zhang ,&nbsp;Xianyang Fang","doi":"10.1016/j.sbi.2024.102944","DOIUrl":"10.1016/j.sbi.2024.102944","url":null,"abstract":"<div><div>RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally &gt;200 nts). Here, we briefly review the basics of these molecular rulers, how the NaM-TPT3 unnatural base pair system empower them, and their applications to explore conformational dynamics of large RNAs, especially in the context of flavivirus RNA genome.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102944"},"PeriodicalIF":6.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Cryo-electron microscopy 编辑综述:冷冻电镜。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.sbi.2024.102937
Pilar Cossio, Edward Egelman
{"title":"Editorial overview: Cryo-electron microscopy","authors":"Pilar Cossio,&nbsp;Edward Egelman","doi":"10.1016/j.sbi.2024.102937","DOIUrl":"10.1016/j.sbi.2024.102937","url":null,"abstract":"","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102937"},"PeriodicalIF":6.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current opinion in structural biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1