Effects of vitamin D supplementation on a deep learning-based mammographic evaluation in SWOG S0812.

IF 3.4 Q2 ONCOLOGY JNCI Cancer Spectrum Pub Date : 2024-07-01 DOI:10.1093/jncics/pkae042
Julia E McGuinness, Garnet L Anderson, Simukayi Mutasa, Dawn L Hershman, Mary Beth Terry, Parisa Tehranifar, Danika L Lew, Monica Yee, Eric A Brown, Sebastien S Kairouz, Nafisa Kuwajerwala, Therese B Bevers, John E Doster, Corrine Zarwan, Laura Kruper, Lori M Minasian, Leslie Ford, Banu Arun, Marian L Neuhouser, Gary E Goodman, Powel H Brown, Richard Ha, Katherine D Crew
{"title":"Effects of vitamin D supplementation on a deep learning-based mammographic evaluation in SWOG S0812.","authors":"Julia E McGuinness, Garnet L Anderson, Simukayi Mutasa, Dawn L Hershman, Mary Beth Terry, Parisa Tehranifar, Danika L Lew, Monica Yee, Eric A Brown, Sebastien S Kairouz, Nafisa Kuwajerwala, Therese B Bevers, John E Doster, Corrine Zarwan, Laura Kruper, Lori M Minasian, Leslie Ford, Banu Arun, Marian L Neuhouser, Gary E Goodman, Powel H Brown, Richard Ha, Katherine D Crew","doi":"10.1093/jncics/pkae042","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning-based mammographic evaluations could noninvasively assess response to breast cancer chemoprevention. We evaluated change in a convolutional neural network-based breast cancer risk model applied to mammograms among women enrolled in SWOG S0812, which randomly assigned 208 premenopausal high-risk women to receive oral vitamin D3 20 000 IU weekly or placebo for 12 months. We applied the convolutional neural network model to mammograms collected at baseline (n = 109), 12 months (n = 97), and 24 months (n = 67) and compared changes in convolutional neural network-based risk score between treatment groups. Change in convolutional neural network-based risk score was not statistically significantly different between vitamin D and placebo groups at 12 months (0.005 vs 0.002, P = .875) or at 24 months (0.020 vs 0.001, P = .563). The findings are consistent with the primary analysis of S0812, which did not demonstrate statistically significant changes in mammographic density with vitamin D supplementation compared with placebo. There is an ongoing need to evaluate biomarkers of response to novel breast cancer chemopreventive agents.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkae042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based mammographic evaluations could noninvasively assess response to breast cancer chemoprevention. We evaluated change in a convolutional neural network-based breast cancer risk model applied to mammograms among women enrolled in SWOG S0812, which randomly assigned 208 premenopausal high-risk women to receive oral vitamin D3 20 000 IU weekly or placebo for 12 months. We applied the convolutional neural network model to mammograms collected at baseline (n = 109), 12 months (n = 97), and 24 months (n = 67) and compared changes in convolutional neural network-based risk score between treatment groups. Change in convolutional neural network-based risk score was not statistically significantly different between vitamin D and placebo groups at 12 months (0.005 vs 0.002, P = .875) or at 24 months (0.020 vs 0.001, P = .563). The findings are consistent with the primary analysis of S0812, which did not demonstrate statistically significant changes in mammographic density with vitamin D supplementation compared with placebo. There is an ongoing need to evaluate biomarkers of response to novel breast cancer chemopreventive agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
补充维生素 D 对 SWOG S0812 中基于深度学习的乳房 X 线照相术评估的影响。
基于深度学习的乳房 X 线照片评估可以无创评估对乳腺癌(BC)化学预防的反应。我们评估了基于卷积神经网络(CNN)的乳腺癌风险模型的变化,该模型适用于参加 SWOG S0812 研究的妇女的乳房 X 光照片,该研究将 208 名绝经前高危妇女随机分为每周口服维生素 D3 20,000IU 或安慰剂 12 个月。我们将 CNN 模型应用于基线(109 人)、12 个月(97 人)和 24 个月(67 人)收集的乳房 X 光照片,并比较了不同治疗组 CNN 风险评分的变化。在12个月和24个月时,维生素D组和安慰剂组的CNN评分变化均无明显差异(0.005 vs. 0.002,p = 0.875),也无明显差异(0.020 vs. 0.001,p = 0.563)。这些研究结果与 S0812 的主要分析结果一致,即与安慰剂相比,维生素 D 补充剂未显示出 MD 的显著变化。目前需要对新型 BC 化学预防药物反应的生物标志物进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JNCI Cancer Spectrum
JNCI Cancer Spectrum Medicine-Oncology
CiteScore
7.70
自引率
0.00%
发文量
80
审稿时长
18 weeks
期刊最新文献
Association between GLP-1RA use and progression of MGUS to Multiple Myeloma among diabetic patients. Sexual Function and Satisfaction in Young Women with Breast Cancer: A Five-Year Prospective Study. County-level racial disparities in prostate cancer specific mortality from 2005 to 2020. Low CD86 expression is a predictive biomarker for clinical response to the therapeutic human papillomavirus vaccine IGMKK16E7: results of a post hoc analysis. Neighborhood vulnerability and associations with poor health-related quality of life among adult survivors of childhood cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1