Harnessing controlled-environment systems for enhanced production of medicinal plants.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-01-01 DOI:10.1093/jxb/erae248
Ajwal Dsouza, Mike Dixon, Mukund Shukla, Thomas Graham
{"title":"Harnessing controlled-environment systems for enhanced production of medicinal plants.","authors":"Ajwal Dsouza, Mike Dixon, Mukund Shukla, Thomas Graham","doi":"10.1093/jxb/erae248","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal plants are valued for their contributions to human health. However, the growing demand for medicinal plants and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled-environment cropping systems, such as vertical farms, offer a transformative approach to production of medicinal plants. By enabling precise control over environmental factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in medicinal plants. This review explores the potential of controlled-environment systems for enhancing production of medicinal plants. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of medicinal plants. Next, we propose strategies based on plant physiology to manipulate environmental conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"76-93"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae248","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Medicinal plants are valued for their contributions to human health. However, the growing demand for medicinal plants and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled-environment cropping systems, such as vertical farms, offer a transformative approach to production of medicinal plants. By enabling precise control over environmental factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in medicinal plants. This review explores the potential of controlled-environment systems for enhancing production of medicinal plants. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of medicinal plants. Next, we propose strategies based on plant physiology to manipulate environmental conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用受控环境系统提高药用植物的产量。
药用植物(MPs)因其对人类健康的贡献而备受重视。然而,对药用植物日益增长的需求以及对其质量和可持续性的担忧,促使人们重新评估传统的生产实践。受控环境种植系统(如垂直农场)为药用植物生产提供了一种变革性方法。通过对光照、二氧化碳、温度、湿度、养分和气流等环境因素进行精确控制,受控环境可以提高 MPs 中生物活性植物化学物质的一致性、浓度和产量。本综述探讨了受控环境系统在提高 MP 生产方面的潜力。首先,我们介绍了受控环境如何克服传统生产在提高 MP 质量方面的局限性。接下来,我们提出了基于植物生理学的策略,以操纵环境条件来提高植物中生物活性化合物的水平。这些策略包括改善光合碳同化、光光谱信号、有目的的胁迫诱导和时序栽培。我们将介绍这些策略的基本机制和实际应用。最后,我们强调了限制受控环境应用的主要知识差距和挑战,并讨论了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
The bitter truth: how insects cope with toxic plant alkaloids. Recent advances in paclitaxel biosynthesis and regulation. Harnessing controlled-environment systems for enhanced production of medicinal plants. Genomic and cell-specific regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy. Same, yet different: towards understanding nutrient use in hemp- and drug-type Cannabis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1