Ajwal Dsouza, Mike Dixon, Mukund Shukla, Thomas Graham
{"title":"Harnessing controlled-environment systems for enhanced production of medicinal plants.","authors":"Ajwal Dsouza, Mike Dixon, Mukund Shukla, Thomas Graham","doi":"10.1093/jxb/erae248","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal plants are valued for their contributions to human health. However, the growing demand for medicinal plants and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled-environment cropping systems, such as vertical farms, offer a transformative approach to production of medicinal plants. By enabling precise control over environmental factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in medicinal plants. This review explores the potential of controlled-environment systems for enhancing production of medicinal plants. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of medicinal plants. Next, we propose strategies based on plant physiology to manipulate environmental conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"76-93"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae248","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Medicinal plants are valued for their contributions to human health. However, the growing demand for medicinal plants and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled-environment cropping systems, such as vertical farms, offer a transformative approach to production of medicinal plants. By enabling precise control over environmental factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in medicinal plants. This review explores the potential of controlled-environment systems for enhancing production of medicinal plants. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of medicinal plants. Next, we propose strategies based on plant physiology to manipulate environmental conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.