{"title":"Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables.","authors":"Yayuan Chen, Sijia Wang, Xi Zhang, Qingqing Yang, Minghui Hua, Yifan Li, Wen Qin, Feng Liu, Meng Liang","doi":"10.1093/schbul/sbae084","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables.</p><p><strong>Study design: </strong>We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores.</p><p><strong>Study results: </strong>The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort.</p><p><strong>Conclusion: </strong>This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.</p>","PeriodicalId":21530,"journal":{"name":"Schizophrenia Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/schbul/sbae084","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables.
Study design: We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores.
Study results: The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort.
Conclusion: This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
期刊介绍:
Schizophrenia Bulletin seeks to review recent developments and empirically based hypotheses regarding the etiology and treatment of schizophrenia. We view the field as broad and deep, and will publish new knowledge ranging from the molecular basis to social and cultural factors. We will give new emphasis to translational reports which simultaneously highlight basic neurobiological mechanisms and clinical manifestations. Some of the Bulletin content is invited as special features or manuscripts organized as a theme by special guest editors. Most pages of the Bulletin are devoted to unsolicited manuscripts of high quality that report original data or where we can provide a special venue for a major study or workshop report. Supplement issues are sometimes provided for manuscripts reporting from a recent conference.