A Non-Parametric Scheme for Identifying Data Characteristic Based on Curve Similarity Matching

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2024-03-27 DOI:10.1109/JAS.2024.124359
Quanbo Ge;Yang Cheng;Hong Li;Ziyi Ye;Yi Zhu;Gang Yao
{"title":"A Non-Parametric Scheme for Identifying Data Characteristic Based on Curve Similarity Matching","authors":"Quanbo Ge;Yang Cheng;Hong Li;Ziyi Ye;Yi Zhu;Gang Yao","doi":"10.1109/JAS.2024.124359","DOIUrl":null,"url":null,"abstract":"For accurately identifying the distribution characteristic of Gaussian-like noises in unmanned aerial vehicle (UAV) state estimation, this paper proposes a non-parametric scheme based on curve similarity matching. In the framework of the proposed scheme, a Parzen window (kernel density estimation, KDE) method on sliding window technology is applied for roughly estimating the sample probability density, a precise data probability density function (PDF) model is constructed with the least square method on K-fold cross validation, and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape, abruptness and symmetry. Some comparison simulations with classical methods and UAV flight experiment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data, which provides better reference for the design of Kalman filter (KF) in complex water environment.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 6","pages":"1424-1437"},"PeriodicalIF":15.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10539291/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For accurately identifying the distribution characteristic of Gaussian-like noises in unmanned aerial vehicle (UAV) state estimation, this paper proposes a non-parametric scheme based on curve similarity matching. In the framework of the proposed scheme, a Parzen window (kernel density estimation, KDE) method on sliding window technology is applied for roughly estimating the sample probability density, a precise data probability density function (PDF) model is constructed with the least square method on K-fold cross validation, and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape, abruptness and symmetry. Some comparison simulations with classical methods and UAV flight experiment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data, which provides better reference for the design of Kalman filter (KF) in complex water environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于曲线相似性匹配的非参数数据特征识别方案
为准确识别无人飞行器(UAV)状态估计中类高斯噪声的分布特征,本文提出了一种基于曲线相似性匹配的非参数方案。在该方案框架内,采用滑动窗口技术的 Parzen 窗口(核密度估计,KDE)方法对样本概率密度进行粗略估计,利用 K 倍交叉验证的最小二乘法构建精确的数据概率密度函数(PDF)模型,并基于对曲线形状、突变性和对称性等数据特征的分析,得出基于评估方法的测试结果。通过与经典方法的对比模拟和无人机飞行实验表明,对于某些类高斯数据,所提出的方案比经典方法具有更高的识别精度,为复杂水环境下卡尔曼滤波器(KF)的设计提供了更好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1