Topological magnetoresistance of magnetic skyrmionic bubbles

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-05-30 DOI:10.1063/5.0190685
Fei Li, Hao Nie, Yu Zhao, Zhihe Zhao, Juntao Huo, Tianyang Wang, Zhaoliang Liao, Andi Liu, Hanjie Guo, Hongxian Shen, Sida Jiang, Renjie Chen, Aru Yan, S.-W. Cheong, Weixing Xia, Jianfei Sun, Lunyong Zhang
{"title":"Topological magnetoresistance of magnetic skyrmionic bubbles","authors":"Fei Li, Hao Nie, Yu Zhao, Zhihe Zhao, Juntao Huo, Tianyang Wang, Zhaoliang Liao, Andi Liu, Hanjie Guo, Hongxian Shen, Sida Jiang, Renjie Chen, Aru Yan, S.-W. Cheong, Weixing Xia, Jianfei Sun, Lunyong Zhang","doi":"10.1063/5.0190685","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmions offer promising prospects for constructing future energy-efficient and high-density information technology, leading to extensive explorations of new skyrmionic materials recently. The topological Hall effect has been widely adopted as a distinctive marker of skyrmion emergence. Alternately, here we propose a novel signature of skyrmion state by quantitatively investigating the magnetoresistance (MR) induced by skyrmionic bubbles in CeMn2Ge2. An intriguing finding was revealed: the anomalous MR measured at different temperatures can be normalized into a single curve, regardless of sample thickness. This behavior can be accurately reproduced by the recent chiral spin textures MR model. Further analysis of the MR anomaly allowed us to quantitatively examine the effective magnetic fields of various scattering channels. Remarkably, the analyses, combined with the Lorentz transmission electron microscopy results, indicate that the in-plane scattering channel with triplet exchange interactions predominantly governs the magnetotransport in the Bloch-type skyrmionic bubble state. Our results not only provide insights into the quantum correction on MR induced by skyrmionic bubble phase, but also present an electrical probing method for studying chiral spin texture formation, evolution, and their topological properties, which opens up exciting possibilities for identifying new skyrmionic materials and advancing the methodology for studying chiral spin textures.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"72 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0190685","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions offer promising prospects for constructing future energy-efficient and high-density information technology, leading to extensive explorations of new skyrmionic materials recently. The topological Hall effect has been widely adopted as a distinctive marker of skyrmion emergence. Alternately, here we propose a novel signature of skyrmion state by quantitatively investigating the magnetoresistance (MR) induced by skyrmionic bubbles in CeMn2Ge2. An intriguing finding was revealed: the anomalous MR measured at different temperatures can be normalized into a single curve, regardless of sample thickness. This behavior can be accurately reproduced by the recent chiral spin textures MR model. Further analysis of the MR anomaly allowed us to quantitatively examine the effective magnetic fields of various scattering channels. Remarkably, the analyses, combined with the Lorentz transmission electron microscopy results, indicate that the in-plane scattering channel with triplet exchange interactions predominantly governs the magnetotransport in the Bloch-type skyrmionic bubble state. Our results not only provide insights into the quantum correction on MR induced by skyrmionic bubble phase, but also present an electrical probing method for studying chiral spin texture formation, evolution, and their topological properties, which opens up exciting possibilities for identifying new skyrmionic materials and advancing the methodology for studying chiral spin textures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性天电离气泡的拓扑磁阻
磁性天融子为构建未来的高能效、高密度信息技术提供了广阔的前景,因此近年来人们对新型天融子材料进行了广泛的探索。拓扑霍尔效应已被广泛用作天离子出现的独特标志。在此,我们通过定量研究 CeMn2Ge2 中天电离气泡诱导的磁阻(MR),提出了一种新的天电离状态特征。研究发现了一个有趣的现象:在不同温度下测得的反常磁阻可以归一化为一条曲线,与样品厚度无关。最新的手性自旋纹理磁共振模型可以准确地再现这种行为。通过对磁共振异常的进一步分析,我们可以定量研究各种散射通道的有效磁场。值得注意的是,这些分析与洛伦兹透射电子显微镜结果相结合,表明具有三重交换相互作用的面内散射通道在布洛赫型天电离气泡态的磁传输中占主导地位。我们的研究结果不仅深入揭示了天电离气泡相对磁共振的量子修正,还提出了一种研究手性自旋纹理的形成、演化及其拓扑性质的电学探测方法,为识别新的天电离材料和推进手性自旋纹理的研究方法提供了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
Morphological-engineering-based capacitive tactile sensors Bond dipole-based geometric theory of band alignment Nonlinear domain engineering for quantum technologies Smart diapers: From wetness monitoring to early diagnosis Gate-voltage control of anisotropic bilinear magnetoresistance at Rashba interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1