{"title":"Topological magnetoresistance of magnetic skyrmionic bubbles","authors":"Fei Li, Hao Nie, Yu Zhao, Zhihe Zhao, Juntao Huo, Tianyang Wang, Zhaoliang Liao, Andi Liu, Hanjie Guo, Hongxian Shen, Sida Jiang, Renjie Chen, Aru Yan, S.-W. Cheong, Weixing Xia, Jianfei Sun, Lunyong Zhang","doi":"10.1063/5.0190685","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmions offer promising prospects for constructing future energy-efficient and high-density information technology, leading to extensive explorations of new skyrmionic materials recently. The topological Hall effect has been widely adopted as a distinctive marker of skyrmion emergence. Alternately, here we propose a novel signature of skyrmion state by quantitatively investigating the magnetoresistance (MR) induced by skyrmionic bubbles in CeMn2Ge2. An intriguing finding was revealed: the anomalous MR measured at different temperatures can be normalized into a single curve, regardless of sample thickness. This behavior can be accurately reproduced by the recent chiral spin textures MR model. Further analysis of the MR anomaly allowed us to quantitatively examine the effective magnetic fields of various scattering channels. Remarkably, the analyses, combined with the Lorentz transmission electron microscopy results, indicate that the in-plane scattering channel with triplet exchange interactions predominantly governs the magnetotransport in the Bloch-type skyrmionic bubble state. Our results not only provide insights into the quantum correction on MR induced by skyrmionic bubble phase, but also present an electrical probing method for studying chiral spin texture formation, evolution, and their topological properties, which opens up exciting possibilities for identifying new skyrmionic materials and advancing the methodology for studying chiral spin textures.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"72 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0190685","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic skyrmions offer promising prospects for constructing future energy-efficient and high-density information technology, leading to extensive explorations of new skyrmionic materials recently. The topological Hall effect has been widely adopted as a distinctive marker of skyrmion emergence. Alternately, here we propose a novel signature of skyrmion state by quantitatively investigating the magnetoresistance (MR) induced by skyrmionic bubbles in CeMn2Ge2. An intriguing finding was revealed: the anomalous MR measured at different temperatures can be normalized into a single curve, regardless of sample thickness. This behavior can be accurately reproduced by the recent chiral spin textures MR model. Further analysis of the MR anomaly allowed us to quantitatively examine the effective magnetic fields of various scattering channels. Remarkably, the analyses, combined with the Lorentz transmission electron microscopy results, indicate that the in-plane scattering channel with triplet exchange interactions predominantly governs the magnetotransport in the Bloch-type skyrmionic bubble state. Our results not only provide insights into the quantum correction on MR induced by skyrmionic bubble phase, but also present an electrical probing method for studying chiral spin texture formation, evolution, and their topological properties, which opens up exciting possibilities for identifying new skyrmionic materials and advancing the methodology for studying chiral spin textures.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.