A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY G3: Genes|Genomes|Genetics Pub Date : 2024-09-04 DOI:10.1093/g3journal/jkae097
Sarah J Petrosky, Thomas M Williams, Mark Rebeiz
{"title":"A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes.","authors":"Sarah J Petrosky, Thomas M Williams, Mark Rebeiz","doi":"10.1093/g3journal/jkae097","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对黑腹果蝇腹部转录因子的基因筛选发现了新的色素沉着基因。
基因调控网络规定了性状发展所需的基因表达模式。这些网络的差异会导致生物体之间的表型差异。虽然功能缺失基因筛选可以确定性状形成所需的基因,但功能增益基因筛选可以克服基因冗余,确定其表达足以改变性状形成的基因位点。在这里,我们利用哈佛医学院转基因 RNAi 项目的转基因品系,对腹部色素沉着表型进行了 CRISPR/Cas9 功能增益筛选和功能缺失筛选。在功能增益实验中,我们发现 55 个转录因子中有 21 个对黑腹果蝇腹部的色素沉着模式有可测量的影响;在功能缺失实验中,我们发现 16 个转录因子中有 7 个对黑腹果蝇腹部的色素沉着模式有可测量的影响。这些转录因子中既有特征明确的色素沉着基因,如 bab1 和 dsx,也有在色素沉着中没有已知作用的转录因子,如 slp2。最后,在2021年和2022年春季学期,遗传学实验课上的本科生进行了部分筛选。我们发现这个筛选是学生参与本科生实验课程研究的一个成功模式,它可以很容易地进行调整,以最少的资源评估数百个基因对果蝇许多不同性状的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
期刊最新文献
Female germline expression of OVO transcription factor bridges Drosophila generations. Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. Thousands of trait-specific KASP markers designed for diverse breeding applications in rice (Oryza sativa). New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. Codon optimality influences homeostatic gene expression in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1