Qinglai Meng , Yao Wang , Yali Long , Qi Wang , Yajing Gao , Junsheng Tian , Changxin Wu , Bin Xie
{"title":"The New Delhi metallo-β-lactamase-1 biosensor rapidly and accurately detected antibiotic plasma concentrations in cefuroxime-treated patients","authors":"Qinglai Meng , Yao Wang , Yali Long , Qi Wang , Yajing Gao , Junsheng Tian , Changxin Wu , Bin Xie","doi":"10.1016/j.ijantimicag.2024.107229","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Therapeutic drug monitoring (TDM) of β-lactam antibiotics in critically ill patients may benefit dose optimisation, thus improving therapeutic outcomes. However, rapidly and accurately detecting these antibiotics in blood remains a challenge. This research group recently developed a thermometric biosensor called the New Delhi metallo-β-lactamase-1 (NDM-1) biosensor, which detects multiple classes of β-lactam antibiotics in spiked plasma samples.</p></div><div><h3>Methods</h3><p>This study assessed the NDM-1 biosensor's effectiveness in detecting plasma concentrations of β-lactam antibiotics in treated patients. Seven patients receiving cefuroxime were studied. Plasma samples collected pre- and post-antibiotic treatment were analysed using the NDM-1 biosensor and compared with liquid chromatography coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).</p></div><div><h3>Results</h3><p>The biosensor detected plasma samples without dilution, and a brief pre-treatment using a polyvinylidene fluoride filter significantly lowered matrix effects, reducing the running time to 5–8 minutes per sample. The assay's linear range for cefuroxime (6.25–200 mg/L) covered target concentrations during the trough phase of pharmacokinetics in critically ill patients. The pharmacokinetic properties of cefuroxime in treated patients determined by the NDM-1 biosensor and the UPLC-MS/MS were comparable, and the cefuroxime plasma concentrations measured by the two methods showed statistically good consistency.</p></div><div><h3>Conclusion</h3><p>These data demonstrate that the NDM-1 biosensor assay is a fast, sensitive, and accurate method for detecting cefuroxime plasma concentrations in treated patients and highlights the NDM-1 biosensor as a promising tool for on-site TDM of β-lactam antibiotics in critically ill patients.</p></div>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092485792400147X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Therapeutic drug monitoring (TDM) of β-lactam antibiotics in critically ill patients may benefit dose optimisation, thus improving therapeutic outcomes. However, rapidly and accurately detecting these antibiotics in blood remains a challenge. This research group recently developed a thermometric biosensor called the New Delhi metallo-β-lactamase-1 (NDM-1) biosensor, which detects multiple classes of β-lactam antibiotics in spiked plasma samples.
Methods
This study assessed the NDM-1 biosensor's effectiveness in detecting plasma concentrations of β-lactam antibiotics in treated patients. Seven patients receiving cefuroxime were studied. Plasma samples collected pre- and post-antibiotic treatment were analysed using the NDM-1 biosensor and compared with liquid chromatography coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
Results
The biosensor detected plasma samples without dilution, and a brief pre-treatment using a polyvinylidene fluoride filter significantly lowered matrix effects, reducing the running time to 5–8 minutes per sample. The assay's linear range for cefuroxime (6.25–200 mg/L) covered target concentrations during the trough phase of pharmacokinetics in critically ill patients. The pharmacokinetic properties of cefuroxime in treated patients determined by the NDM-1 biosensor and the UPLC-MS/MS were comparable, and the cefuroxime plasma concentrations measured by the two methods showed statistically good consistency.
Conclusion
These data demonstrate that the NDM-1 biosensor assay is a fast, sensitive, and accurate method for detecting cefuroxime plasma concentrations in treated patients and highlights the NDM-1 biosensor as a promising tool for on-site TDM of β-lactam antibiotics in critically ill patients.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.