{"title":"Accurate and generalizable soil liquefaction prediction model based on the CatBoost algorithm","authors":"Xianda Feng, Jiazhi He, Bin Lu","doi":"10.1007/s11600-024-01381-9","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of soil liquefaction is important for preventing geological disasters. Soil liquefaction prediction models based on machine learning algorithms are efficient and accurate; however, some models fail to achieve highly precise soil liquefaction predictions in certain areas because of poor generalizability, which limits their applicability. Thus, a soil liquefaction prediction model was constructed using the CatBoost (CB) algorithm to support categorical features. The model was trained using standard liquefaction datasets from domestic and foreign sources and was optimized with Optuna hyperparameters. Additionally, the model was evaluated using five evaluation metrics and its performance was compared to that of other models that use multi-layer perceptron, support vector machine, random forest, and XGBoost algorithms. Finally, the prediction capability of the model was verified using three case studies. Experimental results demonstrated that the CB-based model generated more accurate soil liquefaction predictions than other comparison models and maintained their performance. Hence, the proposed model accurately predicts soil liquefaction and offers strong generalizability, demonstrating the potential to contribute toward the prevention and control of soil liquefaction in engineering projects, and toward ensuring the safety and stability of structures built on or near liquefiable soils.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 5","pages":"3417 - 3426"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01381-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of soil liquefaction is important for preventing geological disasters. Soil liquefaction prediction models based on machine learning algorithms are efficient and accurate; however, some models fail to achieve highly precise soil liquefaction predictions in certain areas because of poor generalizability, which limits their applicability. Thus, a soil liquefaction prediction model was constructed using the CatBoost (CB) algorithm to support categorical features. The model was trained using standard liquefaction datasets from domestic and foreign sources and was optimized with Optuna hyperparameters. Additionally, the model was evaluated using five evaluation metrics and its performance was compared to that of other models that use multi-layer perceptron, support vector machine, random forest, and XGBoost algorithms. Finally, the prediction capability of the model was verified using three case studies. Experimental results demonstrated that the CB-based model generated more accurate soil liquefaction predictions than other comparison models and maintained their performance. Hence, the proposed model accurately predicts soil liquefaction and offers strong generalizability, demonstrating the potential to contribute toward the prevention and control of soil liquefaction in engineering projects, and toward ensuring the safety and stability of structures built on or near liquefiable soils.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.