{"title":"UGINR: large-scale unstructured grid reduction via implicit neural representation","authors":"Keyuan Liu, Chenyue Jiao, Xin Gao, Chongke Bi","doi":"10.1007/s12650-024-01003-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Recently, implicit neural representations (INRs) have demonstrated significant capabilities in handling 3D volume data, especially in the context of data compression. However, the majority of research has predominantly focused on structured grids, which are not commonly found in scientific domains, particularly in physics. To address this limitation, we propose an unstructured grid reduction method via implicit neural representation (UGINR). UGINR employs a divide-and-conquer approach; specifically, we segment the large-scale data into pieces based on values. Subsequently, we employ an INR network for each piece to learn its distinctive features. Finally, we integrate these individual networks to achieve the compression goal. To ensure compatibility with established research methods, we sample only the vertices of each cell in the unstructured grid. Through weight quantization, our model can achieve a high compression ratio. To illustrate the effectiveness of the proposed method, we conduct experiments on various datasets, demonstrating our approach’s robustness in scientific visualization and large-scale data compression.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"136 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-01003-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, implicit neural representations (INRs) have demonstrated significant capabilities in handling 3D volume data, especially in the context of data compression. However, the majority of research has predominantly focused on structured grids, which are not commonly found in scientific domains, particularly in physics. To address this limitation, we propose an unstructured grid reduction method via implicit neural representation (UGINR). UGINR employs a divide-and-conquer approach; specifically, we segment the large-scale data into pieces based on values. Subsequently, we employ an INR network for each piece to learn its distinctive features. Finally, we integrate these individual networks to achieve the compression goal. To ensure compatibility with established research methods, we sample only the vertices of each cell in the unstructured grid. Through weight quantization, our model can achieve a high compression ratio. To illustrate the effectiveness of the proposed method, we conduct experiments on various datasets, demonstrating our approach’s robustness in scientific visualization and large-scale data compression.
Journal of VisualizationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍:
Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization.
The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.