Effect of Low Plasma Spraying Power on Anode Microstructure and Performance for Metal-Supported Solid Oxide Fuel Cells

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Journal of Thermal Spray Technology Pub Date : 2024-05-31 DOI:10.1007/s11666-024-01789-1
Zhigang Zhu, Honglong Ning, Chen Song, Kaisheng Lin, Taikai Liu, Kui Wen, Changguang Deng, Hanlin Liao, Min Liu
{"title":"Effect of Low Plasma Spraying Power on Anode Microstructure and Performance for Metal-Supported Solid Oxide Fuel Cells","authors":"Zhigang Zhu,&nbsp;Honglong Ning,&nbsp;Chen Song,&nbsp;Kaisheng Lin,&nbsp;Taikai Liu,&nbsp;Kui Wen,&nbsp;Changguang Deng,&nbsp;Hanlin Liao,&nbsp;Min Liu","doi":"10.1007/s11666-024-01789-1","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-supported solid oxide fuel cells have broad application prospects in distributed power generation, transportation, military, and other fields. The electrochemical performance of the cell is still a challenge in commercial applications. Regulating the anode microstructure and optimizing polarization characteristics are effective methods. In this study, atmospheric plasma spraying technology is chosen to prepare the Ni-Gd<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>1.9</sub>(GDC) anodes using different low plasma powers (18, 21, 24 kW), which is cost-effective and efficient. The power effect on anode microstructure and electrochemical performance is investigated. The results show that as the plasma power decreases from 24 to 18 kW, the anode’s gas permeability and three-phase reaction boundary (TPB) gradually increase. Reducing the spraying power can decrease polarization resistance and improve power density. The 18-kW anode exhibits the lowest polarization resistance and the best output performance. Open-circuit voltage and maximum power density are 1.03 V and 0.89 W cm<sup>−2</sup> at 750 °C, respectively. The polarization resistance and total resistance are 0.19 and 0.40 Ω cm<sup>2</sup>, respectively. The experimental results prove that atmospheric plasma spraying can realize the rapid and low-cost anode preparation for high-performance MS-SOFC.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1725 - 1735"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01789-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-supported solid oxide fuel cells have broad application prospects in distributed power generation, transportation, military, and other fields. The electrochemical performance of the cell is still a challenge in commercial applications. Regulating the anode microstructure and optimizing polarization characteristics are effective methods. In this study, atmospheric plasma spraying technology is chosen to prepare the Ni-Gd0.2Ce0.8O1.9(GDC) anodes using different low plasma powers (18, 21, 24 kW), which is cost-effective and efficient. The power effect on anode microstructure and electrochemical performance is investigated. The results show that as the plasma power decreases from 24 to 18 kW, the anode’s gas permeability and three-phase reaction boundary (TPB) gradually increase. Reducing the spraying power can decrease polarization resistance and improve power density. The 18-kW anode exhibits the lowest polarization resistance and the best output performance. Open-circuit voltage and maximum power density are 1.03 V and 0.89 W cm−2 at 750 °C, respectively. The polarization resistance and total resistance are 0.19 and 0.40 Ω cm2, respectively. The experimental results prove that atmospheric plasma spraying can realize the rapid and low-cost anode preparation for high-performance MS-SOFC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低等离子喷涂功率对金属支撑型固体氧化物燃料电池阳极微观结构和性能的影响
金属支撑固体氧化物燃料电池在分布式发电、交通、军事等领域有着广阔的应用前景。在商业应用中,电池的电化学性能仍然是一个挑战。调节阳极微结构和优化极化特性是有效的方法。本研究选择大气等离子体喷涂技术制备 Ni-Gd0.2Ce0.8O1.9(GDC) 阳极,采用不同的低等离子体功率(18、21、24 kW),既经济又高效。研究了功率对阳极微观结构和电化学性能的影响。结果表明,随着等离子体功率从 24 千瓦降低到 18 千瓦,阳极的气体渗透性和三相反应边界(TPB)逐渐增加。降低喷射功率可以降低极化电阻,提高功率密度。18 千瓦阳极的极化电阻最小,输出性能最好。在 750 °C 时,开路电压和最大功率密度分别为 1.03 V 和 0.89 W cm-2。极化电阻和总电阻分别为 0.19 和 0.40 Ω cm2。实验结果证明,大气等离子体喷涂可以实现高性能 MS-SOFC 阳极的快速、低成本制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
期刊最新文献
Professor Pierre Léon Fauchais: “Passion and Courage” (1937–2024) Microstructural Evolution and Tribological Responses of Heat-Treated AlFeCoNiCr–Cr3C2 Coating In Situ Measurement of Track Shape in Cold Spray Deposits Design and Development of Cost-Effective Equipment for Tribological Evaluation of Thermally Sprayed Abradable Coatings Impact of Hydroxyapatite Powder Particle Size on Mechanical and Electrochemical Properties of Flame-Sprayed Coatings for Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1