Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation
{"title":"Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation","authors":"Jiwon Hwang, Dong-Hyun Cha, Donghyuck Yoon, Tae-Young Goo, Sueng-Pil Jung","doi":"10.1007/s00376-024-3232-9","DOIUrl":null,"url":null,"abstract":"<p>This study evaluated the simulation performance of mesoscale convective system (MCS)-induced precipitation, focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula. The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP) analysis data, as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model. Particularly, temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data. Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis, which exhibited a cold and dry bias in the lower levels below 850 hPa. The model, in terms of the precipitation simulations, particularly for high-intensity precipitation over the Yellow Sea, demonstrated higher accuracy when applying ECMWF analysis data as the initial condition. This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features (i.e., warm and humid lower-level atmosphere) over the Yellow Sea. In conclusion, this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data. Furthermore, it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"102 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3232-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the simulation performance of mesoscale convective system (MCS)-induced precipitation, focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula. The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP) analysis data, as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model. Particularly, temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data. Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis, which exhibited a cold and dry bias in the lower levels below 850 hPa. The model, in terms of the precipitation simulations, particularly for high-intensity precipitation over the Yellow Sea, demonstrated higher accuracy when applying ECMWF analysis data as the initial condition. This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features (i.e., warm and humid lower-level atmosphere) over the Yellow Sea. In conclusion, this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data. Furthermore, it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.