Hanxiao Yuan, Yang Liu, Qiuhua Tang, Jie Li, Guanxu Chen, Wuxu Cai
{"title":"ST-LSTM-SA: A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning","authors":"Hanxiao Yuan, Yang Liu, Qiuhua Tang, Jie Li, Guanxu Chen, Wuxu Cai","doi":"10.1007/s00376-024-3219-6","DOIUrl":null,"url":null,"abstract":"<p>The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environmental parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observational data, we employ transfer learning by first training the model using reanalysis datasets, followed by fine-tuning it using in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-month SVFs as input, our model predicts the SVFs for the subsequent three months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field (SVF), but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"50 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3219-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environmental parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observational data, we employ transfer learning by first training the model using reanalysis datasets, followed by fine-tuning it using in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-month SVFs as input, our model predicts the SVFs for the subsequent three months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field (SVF), but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.