Thermal, morphological, and structural characterization of starch-based bio-polymers for melt spinnability

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2024-05-30 DOI:10.1515/epoly-2024-0025
Selamu Temesgen, Mirko Rennert, Tamrat Tesfaye, Lucas Großmann, Ines Kuehnert, Norbert Smolka, Michael Nase
{"title":"Thermal, morphological, and structural characterization of starch-based bio-polymers for melt spinnability","authors":"Selamu Temesgen, Mirko Rennert, Tamrat Tesfaye, Lucas Großmann, Ines Kuehnert, Norbert Smolka, Michael Nase","doi":"10.1515/epoly-2024-0025","DOIUrl":null,"url":null,"abstract":"The demand for sustainable textiles has increased research on bio-based biopolymers. Fiber spinning from starch biopolymer and its blends was widely attempted using electro-spinning; however, it is less attempted using melt spinning which is an industrially feasible method. In this study, native tapioca starch is converted into thermoplastic starch (TPS), blended with polylactic acid (PLA), and is attempted for melt spinnability in its neat and blended form TPS/PLA (70/30) with the intention of checking the possibility of melt spinning. The results from characterization of the prepared biopolymers show that thermal analysis of neat TPS does not reveal clear thermal transitions, glass transition (<jats:italic>T</jats:italic> <jats:sub>g</jats:sub>), and melting (<jats:italic>T</jats:italic> <jats:sub>m</jats:sub>), in the second heating curve, rather it influenced crystallization behavior of PLA as seen from differential scanning calorimetry result and degradation temperature (<jats:italic>T</jats:italic> <jats:sub>d</jats:sub>) was found to be in the range of 296–352°C from thermogravimetric analysis showing that addition of PLA improved thermal stability of TPS. Morphology analysis with AFM images revealed the presence of granular starch in neat TPS and phase separation in TPS/PLA blends with finer phase distribution in the presence of additives. Fourier transform infrared spectroscopy result shows the interaction between starch, glycerol, and PLA showing the effect of thermoplasticization of starch which brings rupture or weakening of the strong glycosidic bonds in between starch molecules and interaction between TPS and PLA as it can be seen from peak shift and peak intensity. The melt spinning trials show the possibility of melt spinning TPS-based biopolymers into fibers even with higher content of TPS as well as neat TPS giving an insight and motivation for more research engagement. The melt-spun fibers were found to have a diameter in the range of 160.0–117.0 μm. However, additional experiments and investigations are required to improve the mechanical and other properties of the fibers.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"68 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0025","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for sustainable textiles has increased research on bio-based biopolymers. Fiber spinning from starch biopolymer and its blends was widely attempted using electro-spinning; however, it is less attempted using melt spinning which is an industrially feasible method. In this study, native tapioca starch is converted into thermoplastic starch (TPS), blended with polylactic acid (PLA), and is attempted for melt spinnability in its neat and blended form TPS/PLA (70/30) with the intention of checking the possibility of melt spinning. The results from characterization of the prepared biopolymers show that thermal analysis of neat TPS does not reveal clear thermal transitions, glass transition (T g), and melting (T m), in the second heating curve, rather it influenced crystallization behavior of PLA as seen from differential scanning calorimetry result and degradation temperature (T d) was found to be in the range of 296–352°C from thermogravimetric analysis showing that addition of PLA improved thermal stability of TPS. Morphology analysis with AFM images revealed the presence of granular starch in neat TPS and phase separation in TPS/PLA blends with finer phase distribution in the presence of additives. Fourier transform infrared spectroscopy result shows the interaction between starch, glycerol, and PLA showing the effect of thermoplasticization of starch which brings rupture or weakening of the strong glycosidic bonds in between starch molecules and interaction between TPS and PLA as it can be seen from peak shift and peak intensity. The melt spinning trials show the possibility of melt spinning TPS-based biopolymers into fibers even with higher content of TPS as well as neat TPS giving an insight and motivation for more research engagement. The melt-spun fibers were found to have a diameter in the range of 160.0–117.0 μm. However, additional experiments and investigations are required to improve the mechanical and other properties of the fibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淀粉基生物聚合物熔融可纺性的热学、形态和结构表征
对可持续纺织品的需求增加了对生物基生物聚合物的研究。利用淀粉生物聚合物及其混合物纺丝的尝试很多,但利用熔融纺丝这种工业上可行的方法纺丝的尝试较少。在本研究中,将原生木薯淀粉转化为热塑性淀粉(TPS),与聚乳酸(PLA)混合,并尝试了纯TPS/PLA(70/30)和混合TPS/PLA(70/30)的熔融纺丝性,目的是检验熔融纺丝的可能性。对制备的生物聚合物进行表征的结果表明,纯 TPS 的热分析在第二次加热曲线中没有显示出明显的热转变,即玻璃化转变(T g)和熔化(T m),相反,从差示扫描量热仪的结果可以看出,它影响了聚乳酸的结晶行为,热重分析发现降解温度(T d)在 296-352°C 之间,这表明添加聚乳酸提高了 TPS 的热稳定性。利用原子力显微镜图像进行的形态分析表明,纯 TPS 中存在颗粒状淀粉,而 TPS/PLA 混合物中存在相分离现象,添加添加剂后,相分布更细。傅立叶变换红外光谱分析结果表明,淀粉、甘油和聚乳酸之间的相互作用显示了淀粉热塑化的效果,淀粉分子之间的强糖苷键断裂或减弱,TPS 和聚乳酸之间也发生了相互作用,这可以从峰值移动和峰值强度看出。熔融纺丝试验表明,即使 TPS 和纯 TPS 的含量较高,也有可能将基于 TPS 的生物聚合物熔融纺丝成纤维,这为更多研究工作提供了启示和动力。熔融纺丝纤维的直径范围为 160.0-117.0 μm。然而,要改善纤维的机械性能和其他性能,还需要进行更多的实验和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1