Robust biaxially stretchable polylactic acid films based on the highly oriented chain network and “nano-walls” containing zinc phenylphosphonate and calcium sulfate whisker: Superior mechanical, barrier, and optical properties

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2024-05-31 DOI:10.1515/epoly-2024-0032
Shi-Juan Ding, Ling-Na Cui, Yue-Jun Liu
{"title":"Robust biaxially stretchable polylactic acid films based on the highly oriented chain network and “nano-walls” containing zinc phenylphosphonate and calcium sulfate whisker: Superior mechanical, barrier, and optical properties","authors":"Shi-Juan Ding, Ling-Na Cui, Yue-Jun Liu","doi":"10.1515/epoly-2024-0032","DOIUrl":null,"url":null,"abstract":"It is urgent to acquire a feasible strategy for balancing the strength and ductility of polylactic acid (PLA) in the application of biodegradable packaging materials. In this study, a new strategy is provided to enhance mechanical, barrier, and optical properties by the synergetic effect of manipulating the amorphous chain entanglement network and constructing the “nano- walls” of highly aligned calcium sulfate whisker (CSW), zinc phenylphosphonate (PPZn), and well-defined crystals via biaxial stretching. PPZn is verified as a nucleator to accelerate the crystallization rate and induce α-form crystals. CSW is regarded as a supporting skeleton to strengthen the entanglement density of the chain network. The extensional stress, which is induced by biaxial stretching, regulates the amorphous chain entanglement network and facilitates the chain orientation. As a result, the synergetic structure displays an outstanding capacity for improving the mechanical, barrier, and optical properties of PLA. Compared to the PLA film, the biaxially stretched PLA/PPZn/CSW films exhibit high strength, excellent ductility, and superior crystallinity, which are significantly increased by up to 53.2%, 381.3%, and 748.9%, respectively. And their gas and water vapor barrier properties remarkably increased by 65.39% and 73.11%, respectively. The optical property with a haze value of 52.4% and good transmittance of 97.4% is also obtained via the synergetic effect. With the excellent comprehensive properties of PLA films, this new strategy explores a new field in environmentally friendly packaging materials and is relevant to future work.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"101 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0032","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

It is urgent to acquire a feasible strategy for balancing the strength and ductility of polylactic acid (PLA) in the application of biodegradable packaging materials. In this study, a new strategy is provided to enhance mechanical, barrier, and optical properties by the synergetic effect of manipulating the amorphous chain entanglement network and constructing the “nano- walls” of highly aligned calcium sulfate whisker (CSW), zinc phenylphosphonate (PPZn), and well-defined crystals via biaxial stretching. PPZn is verified as a nucleator to accelerate the crystallization rate and induce α-form crystals. CSW is regarded as a supporting skeleton to strengthen the entanglement density of the chain network. The extensional stress, which is induced by biaxial stretching, regulates the amorphous chain entanglement network and facilitates the chain orientation. As a result, the synergetic structure displays an outstanding capacity for improving the mechanical, barrier, and optical properties of PLA. Compared to the PLA film, the biaxially stretched PLA/PPZn/CSW films exhibit high strength, excellent ductility, and superior crystallinity, which are significantly increased by up to 53.2%, 381.3%, and 748.9%, respectively. And their gas and water vapor barrier properties remarkably increased by 65.39% and 73.11%, respectively. The optical property with a haze value of 52.4% and good transmittance of 97.4% is also obtained via the synergetic effect. With the excellent comprehensive properties of PLA films, this new strategy explores a new field in environmentally friendly packaging materials and is relevant to future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高度定向链网络和含有苯基膦酸锌和硫酸钙晶须的 "纳米壁 "的坚固双轴可拉伸聚乳酸薄膜:卓越的机械、阻隔和光学性能
在可生物降解包装材料的应用中,迫切需要一种可行的策略来平衡聚乳酸(PLA)的强度和延展性。本研究提供了一种新策略,即通过双轴拉伸操纵无定形链缠结网络和构建高度排列的硫酸钙晶须(CSW)、苯基膦酸锌(PPZn)"纳米壁 "的协同效应来增强聚乳酸的机械、阻隔和光学性能。PPZn 可作为成核剂加速结晶速度并诱导形成 α 形晶体。CSW 被视为加强链网缠结密度的支撑骨架。由双轴拉伸引起的延伸应力可调节非晶链纠缠网络并促进链的取向。因此,这种协同结构在改善聚乳酸的机械性能、阻隔性能和光学性能方面表现突出。与聚乳酸薄膜相比,双轴拉伸聚乳酸/PPZn/CSW 薄膜具有高强度、良好的延展性和优异的结晶性,分别显著提高了 53.2%、381.3% 和 748.9%。其气体和水蒸气阻隔性能也分别大幅提高了 65.39% 和 73.11%。通过协同效应还获得了雾度值为 52.4%、透光率为 97.4% 的良好光学性能。聚乳酸薄膜具有优异的综合性能,这一新战略为环保包装材料开拓了新的领域,对今后的工作具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1