D. Vaccaro, H. Akamatsu, L. Gottardi, M. de Wit, M. P. Bruijn, J. van der Kuur, K. Nagayoshi, E. Taralli, K. Ravensberg, J.-R. Gao, J. W. A. den Herder
{"title":"Developments on Frequency Domain Multiplexing Readout for Large Arrays of Transition-Edge Sensor X-ray Micro-calorimeters","authors":"D. Vaccaro, H. Akamatsu, L. Gottardi, M. de Wit, M. P. Bruijn, J. van der Kuur, K. Nagayoshi, E. Taralli, K. Ravensberg, J.-R. Gao, J. W. A. den Herder","doi":"10.1007/s10909-024-03099-w","DOIUrl":null,"url":null,"abstract":"<div><p>At SRON, we have been developing X-ray TES micro-calorimeters as backup technology for the X-ray Integral Field Unit (X-IFU) of the Athena mission, demonstrating excellent resolving powers both under DC and AC bias. We also developed a frequency-domain multiplexing (FDM) readout technology, where each TES is coupled to a superconducting band-pass LC resonator and AC biased at MHz frequencies through a common readout line. The TES signals are summed at the input of a superconducting quantum interference device (SQUID), which performs a first amplification at cryogenic stage. Custom analog front-end electronics and digital boards take care of further amplifying the signals at room temperature and of the modulation/demodulation of the TES signals and bias carrier, respectively. We report on the most recent developments on our FDM technology, which involves a two-channel demonstration with a total of 70 pixels with a summed energy resolution of 2.34 ± 0.02 eV at 5.9 keV without spectral performance degradation with respect to single-channel operation. Moreover, we discuss prospects towards the scaling-up to a larger multiplexing factor up to 78 pixels per channel in a 1–6 MHz readout bandwidth.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"21 - 28"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03099-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
At SRON, we have been developing X-ray TES micro-calorimeters as backup technology for the X-ray Integral Field Unit (X-IFU) of the Athena mission, demonstrating excellent resolving powers both under DC and AC bias. We also developed a frequency-domain multiplexing (FDM) readout technology, where each TES is coupled to a superconducting band-pass LC resonator and AC biased at MHz frequencies through a common readout line. The TES signals are summed at the input of a superconducting quantum interference device (SQUID), which performs a first amplification at cryogenic stage. Custom analog front-end electronics and digital boards take care of further amplifying the signals at room temperature and of the modulation/demodulation of the TES signals and bias carrier, respectively. We report on the most recent developments on our FDM technology, which involves a two-channel demonstration with a total of 70 pixels with a summed energy resolution of 2.34 ± 0.02 eV at 5.9 keV without spectral performance degradation with respect to single-channel operation. Moreover, we discuss prospects towards the scaling-up to a larger multiplexing factor up to 78 pixels per channel in a 1–6 MHz readout bandwidth.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.