Transcending catalytic limits for methane decomposition: multi-functional basalt fiber-supported catalysts with membrane synergy

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-05-31 DOI:10.1007/s42114-024-00905-7
Claudia Li, Guoqiang Song, Kang Hui Lim, Feiyang Hu, Jaka Sunarso, Naitao Yang, Michael S. Wong, Shaomin Liu, Sibudjing Kawi
{"title":"Transcending catalytic limits for methane decomposition: multi-functional basalt fiber-supported catalysts with membrane synergy","authors":"Claudia Li,&nbsp;Guoqiang Song,&nbsp;Kang Hui Lim,&nbsp;Feiyang Hu,&nbsp;Jaka Sunarso,&nbsp;Naitao Yang,&nbsp;Michael S. Wong,&nbsp;Shaomin Liu,&nbsp;Sibudjing Kawi","doi":"10.1007/s42114-024-00905-7","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic methane (CH<sub>4</sub>) decomposition (CDM) offers a direct pathway for hydrogen (H<sub>2</sub>) gas production and valuable carbon nanotube (CNT) synthesis. However, the stability of this gas-to-solid reaction is hindered by limitations in CNT growth and reactor volume constraints. Departing beyond conventional nanopowder catalysts, we introduce basalt fiber-supported Ni/LTA catalysts that feature CO<sub>x</sub>-free H<sub>2</sub> generation and up to 3.7 times longer CDM reaction times, delivering an H<sub>2</sub> production rate of 3.1 mol g<sub>Ni</sub><sup>−1</sup> h<sup>−1</sup> over 22 h at 500 °C, surpassing Ni/LTA nanopowder counterparts. The basalt fiber catalysts exhibit uniform and robust CNT growth, along with sustained and stable H<sub>2</sub> generation lasting up to three times longer relative to traditional CDM catalysts that deactivate within 10 h as reported in the literature. Integration of the flexible basalt fiber catalysts into an H<sub>2</sub>-permeable LTA-Pd membrane reactor further enhances the reaction time by 36% and CH<sub>4</sub> conversion by 40%, achieving up to 45% CH<sub>4</sub> conversion over 27 h, surpassing expected equilibrium conversion rates. The excellent catalytic stability of the 10 wt% Ni/LTA basalt fiber catalyst is additionally showcased through multiple reduction-800 °C CDM reaction-CO<sub>2</sub> regeneration cycles. This transformative study propels the development of functional catalyst materials, revolutionizing thermocatalytic processes.</p><h3>Graphical abstract</h3><p>A basalt fiber-supported LTA zeolite-based nickel catalyst advances methane decomposition, yielding CO<sub>x</sub>-free hydrogen, multi-wall carbon nanotubes, and extensive reaction time.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00905-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic methane (CH4) decomposition (CDM) offers a direct pathway for hydrogen (H2) gas production and valuable carbon nanotube (CNT) synthesis. However, the stability of this gas-to-solid reaction is hindered by limitations in CNT growth and reactor volume constraints. Departing beyond conventional nanopowder catalysts, we introduce basalt fiber-supported Ni/LTA catalysts that feature COx-free H2 generation and up to 3.7 times longer CDM reaction times, delivering an H2 production rate of 3.1 mol gNi−1 h−1 over 22 h at 500 °C, surpassing Ni/LTA nanopowder counterparts. The basalt fiber catalysts exhibit uniform and robust CNT growth, along with sustained and stable H2 generation lasting up to three times longer relative to traditional CDM catalysts that deactivate within 10 h as reported in the literature. Integration of the flexible basalt fiber catalysts into an H2-permeable LTA-Pd membrane reactor further enhances the reaction time by 36% and CH4 conversion by 40%, achieving up to 45% CH4 conversion over 27 h, surpassing expected equilibrium conversion rates. The excellent catalytic stability of the 10 wt% Ni/LTA basalt fiber catalyst is additionally showcased through multiple reduction-800 °C CDM reaction-CO2 regeneration cycles. This transformative study propels the development of functional catalyst materials, revolutionizing thermocatalytic processes.

Graphical abstract

A basalt fiber-supported LTA zeolite-based nickel catalyst advances methane decomposition, yielding COx-free hydrogen, multi-wall carbon nanotubes, and extensive reaction time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越甲烷分解的催化极限:具有膜协同作用的多功能玄武岩纤维支撑催化剂
催化甲烷(CH4)分解(CDM)为氢气(H2)生产和宝贵的碳纳米管(CNT)合成提供了直接途径。然而,CNT 生长的局限性和反应器容积的限制阻碍了这种气固反应的稳定性。在传统纳米粉体催化剂的基础上,我们推出了玄武岩纤维支撑的 Ni/LTA 催化剂,其特点是生成无 COx 的 H2,CDM 反应时间最多可延长 3.7 倍,在 500 °C 下 22 小时内的 H2 产率为 3.1 mol gNi-1 h-1,超过了 Ni/LTA 纳米粉体催化剂。与文献报道的在 10 小时内失活的传统 CDM 催化剂相比,玄武岩纤维催化剂表现出均匀、稳健的 CNT 生长,以及持续、稳定的 H2 生成,其持续时间长达三倍。将柔性玄武岩纤维催化剂集成到透氢 LTA-Pd 膜反应器中,可进一步将反应时间延长 36%,将 CH4 转化率提高 40%,在 27 小时内实现高达 45% 的 CH4 转化率,超过了预期的平衡转化率。通过多次还原-800 °C CDM 反应-CO2 再生循环,10 wt% Ni/LTA 玄武岩纤维催化剂卓越的催化稳定性得到了进一步展示。这项变革性研究推动了功能催化剂材料的发展,彻底改变了热催化过程。图解摘要一种以玄武岩纤维为支撑的 LTA 沸石基镍催化剂促进了甲烷分解,产生了不含 COx 的氢气、多壁碳纳米管,并延长了反应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Effect of surface grafting on the oil–water mixture passing through a nanoslit: a molecular dynamics simulation study In-situ fabrication of Ni2⁺/Zn2⁺-polydopamine complex derived FeCo@C/Ni@C cubic nanocages towards enhanced electromagnetic performance Computational analysis of the interfacial debonding in polymer composites: research progress and challenges High transmittance, high haze, and UV-harvesting CNNs@CNF/PVA composite film for light management Enhancing flame retardancy of flexible polyurethane foams through one-step coassembled nanocoatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1