Pub Date : 2025-01-21DOI: 10.1007/s42114-024-01145-5
Shuangshuang Liu, Yuanyuan Lian, Yizhi Zhao, Hua Hou, Juanna Ren, Eman Ramadan Elsharkawy, Salah M. El-Bahy, Zeinhom M. El-Bahy, Nannan Wu
Owing to the extensive usage of information technology, serious electromagnetic (EM) radiation pollutions are caused. Hence, investigating high-performance microwave absorption materials is crucial to dealing with the severe EM radiation problem. MXene, a novel 2D material, attracts extensive attention in EM fields due to its remarkable specific surface area, abundant functional groups, and high electrical conductivity. Meanwhile, various MXene-based nanocomposites with different components and morphologies were fabricated as efficient microwave absorbers. In this study, the theories of microwave absorption and the MXene fabrication methods were summarized, and recent advancements in MXene-based absorbers were comparatively discussed with detailed examples, especially, some newly emerged Mene-based composites including MXene/metal-organic frameworks (MOFs) derived composites and MXene/layered double hydroxides (LDHs) composites. The vital shortcomings of MXene-based nanocomposites for microwave absorption are disclosed, and the prospects have been proposed for synthesizing MXene-based microwave absorbers with multiple innovative applications. This review guides the structure and component design as effective absorbers.
This review summarized the most recent advancements of MXene-based composites for microwave absorption.
{"title":"Recent advances of MXene-based nanocomposites towards microwave absorption: a review","authors":"Shuangshuang Liu, Yuanyuan Lian, Yizhi Zhao, Hua Hou, Juanna Ren, Eman Ramadan Elsharkawy, Salah M. El-Bahy, Zeinhom M. El-Bahy, Nannan Wu","doi":"10.1007/s42114-024-01145-5","DOIUrl":"10.1007/s42114-024-01145-5","url":null,"abstract":"<p>Owing to the extensive usage of information technology, serious electromagnetic (EM) radiation pollutions are caused. Hence, investigating high-performance microwave absorption materials is crucial to dealing with the severe EM radiation problem. MXene, a novel 2D material, attracts extensive attention in EM fields due to its remarkable specific surface area, abundant functional groups, and high electrical conductivity. Meanwhile, various MXene-based nanocomposites with different components and morphologies were fabricated as efficient microwave absorbers. In this study, the theories of microwave absorption and the MXene fabrication methods were summarized, and recent advancements in MXene-based absorbers were comparatively discussed with detailed examples, especially, some newly emerged Mene-based composites including MXene/metal-organic frameworks (MOFs) derived composites and MXene/layered double hydroxides (LDHs) composites. The vital shortcomings of MXene-based nanocomposites for microwave absorption are disclosed, and the prospects have been proposed for synthesizing MXene-based microwave absorbers with multiple innovative applications. This review guides the structure and component design as effective absorbers.</p><p>This review summarized the most recent advancements of MXene-based composites for microwave absorption.\u0000</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1007/s42114-024-01158-0
Qiang Zhou, Quazi T. H. Shubhra, Peng Lai, Jiayi Shi, Chenhao Fang, Qian Guo, Wanqing Li, Rui Chen, Xinkun Shen, Lina Huang, Xiaojun Cai, Sen Lin
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with a poor prognosis that is usually advanced at the time of diagnosis. Photodynamic therapy (PDT), with its safety and reproducibility, offers significant potential for advanced NPC treatment, though its efficacy is hindered by the hypoxic tumor microenvironment and continuous oxygen depletion during therapy. This study presents a versatile nanoformulation (CGP) co-loaded with chlorin e6 (Ce6) and genistein (Gen) within peptide dendritic nanogel (PDN) for enhanced NPC treatment. The positively charged CGP is efficiently internalized by NPC cells, followed by glutathione (GSH)-responsive degradation, releasing Ce6 and Gen. The released Gen reduces intracellular oxygen consumption and tumor metastability by inhibiting the HIF-1 signaling pathway, thereby efficiently boosting PDT efficacy. In vitro and in vivo studies confirmed that the combination of Gen and PDT effectively eliminates tumors and inhibits metastasis. Multi-omics analysis (RNA sequencing and targeted energy metabolomics) revealed that CGP suppresses HIF-1α, GLUT1, and VEGFA expression, downregulating the HIF-1 pathway and reducing anaerobic glycolysis, thereby successfully remodeling the hypoxia-associated tumor microenvironment. This study demonstrates that the Gen-PDT combination is a versatile approach capable of enhancing PDT efficacy and holds promise for NPC management.
{"title":"Genistein and chlorin E6-loaded versatile nanoformulation for remodeling the hypoxia-related tumor microenvironment and boosting photodynamic therapy in nasopharyngeal carcinoma treatment","authors":"Qiang Zhou, Quazi T. H. Shubhra, Peng Lai, Jiayi Shi, Chenhao Fang, Qian Guo, Wanqing Li, Rui Chen, Xinkun Shen, Lina Huang, Xiaojun Cai, Sen Lin","doi":"10.1007/s42114-024-01158-0","DOIUrl":"10.1007/s42114-024-01158-0","url":null,"abstract":"<div><p>Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with a poor prognosis that is usually advanced at the time of diagnosis. Photodynamic therapy (PDT), with its safety and reproducibility, offers significant potential for advanced NPC treatment, though its efficacy is hindered by the hypoxic tumor microenvironment and continuous oxygen depletion during therapy. This study presents a versatile nanoformulation (CGP) co-loaded with chlorin e6 (Ce6) and genistein (Gen) within peptide dendritic nanogel (PDN) for enhanced NPC treatment. The positively charged CGP is efficiently internalized by NPC cells, followed by glutathione (GSH)-responsive degradation, releasing Ce6 and Gen. The released Gen reduces intracellular oxygen consumption and tumor metastability by inhibiting the HIF-1 signaling pathway, thereby efficiently boosting PDT efficacy. In vitro and in vivo studies confirmed that the combination of Gen and PDT effectively eliminates tumors and inhibits metastasis. Multi-omics analysis (RNA sequencing and targeted energy metabolomics) revealed that CGP suppresses HIF-1α, GLUT1, and VEGFA expression, downregulating the HIF-1 pathway and reducing anaerobic glycolysis, thereby successfully remodeling the hypoxia-associated tumor microenvironment. This study demonstrates that the Gen-PDT combination is a versatile approach capable of enhancing PDT efficacy and holds promise for NPC management.\u0000</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1007/s42114-025-01239-8
Woojin Yang, Minju Park, Yoohyeon Choi, Il-Soo Park, Jae Won Yun, Heewoong Yoon, Dongjae Lee, Jiwon Seo, Heesuk Kim, Jae Hong Kim
The growing demand for biodegradable conductive composites is driven by the need to mitigate electronic waste and advance bioelectronics for healthcare applications. Self-assembled peptide composites, particularly diphenylalanine (FF) derivatives, represent a promising class of materials for such electronics due to their inherent biodegradability and ease of hybridization with functional materials. However, the integration of ionic species with these peptides is often limited by the disruption of non-covalent interactions between FF derivatives. In this study, we developed biodegradable, ionic thermoelectric composites by co-assembling Fmoc-FF with deep eutectic solvents (DESs) composed of choline chloride (ChCl) and ethylene glycol (EG). Spectroscopic analyses revealed that Fmoc-FF formed eutectogels through π-π interactions between Fmoc groups, resulting in a highly porous colloidal network. The Fmoc-FF eutectogels exhibited an ionic conductivity of up to 47.5 mS·cm−1 and a Seebeck coefficient of 7.39 mV·K−1, making them suitable for heat harvesting. Additionally, they were entirely degraded within 48 h under proteolytic conditions, confirming their biodegradability. The eutectogels also displayed self-healing and shear-thinning behaviors, highlighting compatibility with additive manufacturing techniques for device integration.