The advancement of scalable patterning techniques is essential for optimizing charge transport, enhancing conductivity, and improving the performance of polymer organic semiconductor (OSC) devices. Conventional photolithography encounters significant challenges in the micro-/nano-fabrication of polymeric materials due to insufficient chemical orthogonality with photoresists. Emerging methodologies, including inkjet printing, meniscus-guided coating, and innovative lithography techniques, have partially mitigated these issues but still frequently encounter limitations related to material versatility and process complexity. In response to these challenges, we developed the nano-aluminum micro-pattern infusion (NAMP-I) technique, which enables the precise patterning of solution-processed organic OSC films on hydrophobic perfluoro(1-butenylvinylether) polymer (CYTOP) dielectric layers. This innovative method employs aluminum-nanoparticle metal films to initiate and control OSC growth, thereby enhancing interfacial quality through the formation of aluminum oxide (Al2O3) and improved hydrogen bonding interactions. Devices fabricated with the NAMP-I technique demonstrate low turn-on voltage, minimal hysteresis, and high carrier mobility of up to 1.85 cm2V−1 s−1. NAMP-I enables high-performance, solution-processed OFETs with sharp on/off switching, demonstrating significant potential for integrating advanced functional materials into flexible and high-density electronic devices.