Science Teachers’ Technical Difficulties in Using Physical Computing and the Internet of Things Into School Science Inquiry

IF 2.9 3区 教育学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS IEEE Transactions on Learning Technologies Pub Date : 2024-03-31 DOI:10.1109/TLT.2024.3406964
Seok-Hyun Ga;Changmi Park;Hyun-Jung Cha;Chan-Jong Kim
{"title":"Science Teachers’ Technical Difficulties in Using Physical Computing and the Internet of Things Into School Science Inquiry","authors":"Seok-Hyun Ga;Changmi Park;Hyun-Jung Cha;Chan-Jong Kim","doi":"10.1109/TLT.2024.3406964","DOIUrl":null,"url":null,"abstract":"Data collection is crucial in securing evidence to support students’ arguments during scientific inquiries. However, due to the high costs associated with equipping schools with various measurement devices, students are limited in the scope of their scientific inquiry. Arduino can be proposed as a solution to the lack of measurement devices in schools. With Arduino, students can create various measurement devices by connecting different sensors, customize these devices to suit their inquiries, and implement remote sensing using the Internet of Things. However, even when promising new technology serves as a beneficial tool for teaching and learning, its successful integration into the educational system can be challenging if teachers struggle to use it. Technical issues often discourage teachers from incorporating potentially valuable technologies into their classrooms. This article examined the adoption of Arduino in three different cases involving teachers from various educational institutions: a gifted education center, an autonomous club activity in a middle school, and a local community center. We identified four major difficulties: 1) selection of appropriate technologies; 2) credibility issues with information from the Internet; 3) technical complexity due to the intervention of multiple variables; and 4) compliance issues with related acts and regulations. We described each of the technical challenges that teachers faced, in detail, and how they dealt with them. Finally, we discussed suggestions for reducing the barriers to Arduino use for teachers and proposed areas for further research.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1849-1858"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10543126/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data collection is crucial in securing evidence to support students’ arguments during scientific inquiries. However, due to the high costs associated with equipping schools with various measurement devices, students are limited in the scope of their scientific inquiry. Arduino can be proposed as a solution to the lack of measurement devices in schools. With Arduino, students can create various measurement devices by connecting different sensors, customize these devices to suit their inquiries, and implement remote sensing using the Internet of Things. However, even when promising new technology serves as a beneficial tool for teaching and learning, its successful integration into the educational system can be challenging if teachers struggle to use it. Technical issues often discourage teachers from incorporating potentially valuable technologies into their classrooms. This article examined the adoption of Arduino in three different cases involving teachers from various educational institutions: a gifted education center, an autonomous club activity in a middle school, and a local community center. We identified four major difficulties: 1) selection of appropriate technologies; 2) credibility issues with information from the Internet; 3) technical complexity due to the intervention of multiple variables; and 4) compliance issues with related acts and regulations. We described each of the technical challenges that teachers faced, in detail, and how they dealt with them. Finally, we discussed suggestions for reducing the barriers to Arduino use for teachers and proposed areas for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科学教师在学校科学探究中使用物理计算和物联网的技术困难
在科学探究过程中,数据收集对于为学生的论点提供证据至关重要。然而,由于学校配备各种测量设备的成本较高,学生的科学探究范围受到限制。Arduino 可以解决学校缺乏测量设备的问题。有了 Arduino,学生可以通过连接不同的传感器创建各种测量设备,根据自己的探究定制这些设备,并利用物联网实现遥感。然而,即使有前途的新技术能成为有益的教学工具,但如果教师在使用过程中遇到困难,将其成功整合到教育系统中也会面临挑战。技术问题往往会阻碍教师将具有潜在价值的技术融入课堂。本文研究了三个不同案例中 Arduino 的应用情况,这些案例涉及来自不同教育机构的教师:一个资优教育中心、一所中学的自主俱乐部活动和一个当地社区中心。我们发现了四个主要困难:1) 选择合适的技术;2) 互联网信息的可信度问题;3) 多变量干预导致的技术复杂性;4) 遵守相关法案和法规的问题。我们详细介绍了教师面临的每项技术挑战,以及他们是如何应对这些挑战的。最后,我们讨论了减少教师使用 Arduino 障碍的建议,并提出了进一步研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Learning Technologies
IEEE Transactions on Learning Technologies COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.50
自引率
5.40%
发文量
82
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.
期刊最新文献
Empowering Instructors: Augmented Reality Authoring Toolkit for Aviation Weather Education Guest Editorial Intelligence Augmentation: The Owl of Athena Designing Learning Technologies: Assessing Attention in Children With Autism Through a Single Case Study Investigating the Efficacy of ChatGPT-3.5 for Tutoring in Chinese Elementary Education Settings Impact of Gamified Learning Experience on Online Learning Effectiveness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1