Effects of confined distance near floor and wire size on electrical wire flame spread behaviors based on heat transfer

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-05-29 DOI:10.1016/j.ijthermalsci.2024.109173
Xinjie Huang , Meng Zhang , Hailong Ding , Peng Xu , Xinyi Zhang , Xinyi Li , Miaomiao Wang , Pengyuan Zhang
{"title":"Effects of confined distance near floor and wire size on electrical wire flame spread behaviors based on heat transfer","authors":"Xinjie Huang ,&nbsp;Meng Zhang ,&nbsp;Hailong Ding ,&nbsp;Peng Xu ,&nbsp;Xinyi Zhang ,&nbsp;Xinyi Li ,&nbsp;Miaomiao Wang ,&nbsp;Pengyuan Zhang","doi":"10.1016/j.ijthermalsci.2024.109173","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to investigate the confined distance near the floor(0∼28 mm) and wire size (the ratios of copper core diameter to entire wire diameter are: 6mm/8 mm,6mm/10 mm,8mm/12 mm and 6mm/12 mm for type Ⅰ, type Ⅱ, type Ⅲ and type Ⅳ, respectively) on the flame spread over polyethylene (PE) wires. It is indicated that, when the confined distance is relatively small, the extinction occurs for all types.The typical parameters of flame shape including of flame width, flame height and flame area, flame spread rate and mass loss rate with the increase of confined distance s can be separated into continuous growth stage and stable fluctuation stage. At the continuous growth stage, the flame area shows an exponential relationship with s as: <span><math><mrow><mi>A</mi><mo>∼</mo><msup><mi>s</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup></mrow></math></span>. And at the stable fluctuation stage, the flame width is larger than that at the unconfined condition accounting for a large portion.While, the flame height is always smaller than that in the unconfined case.In order to explicitly describe the heat transfer, the upward large main flame and downward small flame are firstly introduced in this paper. Correspondingly, the heat flux feedback of components to the preheating zone is established with the upward main flame flux <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>u</mi><mi>p</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></math></span> [includes of <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>v</mi><mi>f</mi><mrow><mo>(</mo><mrow><mi>u</mi><mi>p</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup><mo>+</mo><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>r</mi><mi>f</mi><mrow><mo>(</mo><mrow><mi>u</mi><mi>p</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></math></span>], the downward small flame heat flux <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></math></span> [ includes of <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>v</mi><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup><mo>+</mo><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>r</mi><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></math></span>], the conductive heat flux <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mi>c</mi><mo>″</mo></msubsup></mrow></math></span> and the gypsum board heat flux <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mi>g</mi><mo>″</mo></msubsup></mrow></math></span>. With the increase of s, <span><math><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></math></span> shows an increasing and then decreasing trend, making it take a second role during heat flux feedback. Meanwhile, the analysis demonstrates that for the larger copper core (type Ⅲ) and the smaller of PE thickness (type Ⅰ), the ratio of heat flux of <span><math><mrow><mfrac><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup><mrow><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>u</mi><mi>p</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup><mo>+</mo><msubsup><mover><mi>q</mi><mo>˙</mo></mover><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>d</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow><mo>)</mo></mrow></mrow><mo>″</mo></msubsup></mrow></mfrac></mrow></math></span> will be increased, which will enhance the heat transfer effect of downward small flame.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to investigate the confined distance near the floor(0∼28 mm) and wire size (the ratios of copper core diameter to entire wire diameter are: 6mm/8 mm,6mm/10 mm,8mm/12 mm and 6mm/12 mm for type Ⅰ, type Ⅱ, type Ⅲ and type Ⅳ, respectively) on the flame spread over polyethylene (PE) wires. It is indicated that, when the confined distance is relatively small, the extinction occurs for all types.The typical parameters of flame shape including of flame width, flame height and flame area, flame spread rate and mass loss rate with the increase of confined distance s can be separated into continuous growth stage and stable fluctuation stage. At the continuous growth stage, the flame area shows an exponential relationship with s as: As52. And at the stable fluctuation stage, the flame width is larger than that at the unconfined condition accounting for a large portion.While, the flame height is always smaller than that in the unconfined case.In order to explicitly describe the heat transfer, the upward large main flame and downward small flame are firstly introduced in this paper. Correspondingly, the heat flux feedback of components to the preheating zone is established with the upward main flame flux q˙f(up) [includes of q˙vf(up)+q˙rf(up)], the downward small flame heat flux q˙f(down) [ includes of q˙vf(down)+q˙rf(down)], the conductive heat flux q˙c and the gypsum board heat flux q˙g. With the increase of s, q˙f(down) shows an increasing and then decreasing trend, making it take a second role during heat flux feedback. Meanwhile, the analysis demonstrates that for the larger copper core (type Ⅲ) and the smaller of PE thickness (type Ⅰ), the ratio of heat flux of q˙f(down)q˙f(up)+q˙f(down) will be increased, which will enhance the heat transfer effect of downward small flame.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热传导的近地面密闭距离和电线尺寸对电线火焰蔓延行为的影响
本文旨在研究地板附近的密闭距离(0∼28 mm)和导线尺寸(铜芯直径与整条导线直径之比分别为:Ⅰ型 6mm/8 mm、Ⅱ型 6mm/10 mm、Ⅲ型 8mm/12 mm、Ⅳ型 6mm/12 mm):Ⅰ型、Ⅱ型、Ⅲ型和Ⅳ型分别为 6mm/8 mm、6mm/10 mm、8mm/12 mm 和 6mm/12 mm)对聚乙烯(PE)导线火焰蔓延的影响。火焰形状的典型参数包括火焰宽度、火焰高度和火焰面积,火焰传播速度和质量损失率随约束距离 s 的增加可分为持续增长阶段和稳定波动阶段。在持续增长阶段,火焰面积与 s 呈指数关系,如图所示:.而在稳定波动阶段,火焰宽度比非密闭条件下的火焰宽度大,占很大一部分,而火焰高度始终小于非密闭条件下的火焰高度。为了明确描述传热,本文首先引入了向上的大主火焰和向下的小火焰。与此对应,建立了向上大火焰热通量[包括]、向下小火焰热通量[包括]、传导热通量和石膏板热通量对预热区各组分的热通量反馈。随着 s 的增大,呈现出先增大后减小的趋势,使其在热通量反馈过程中处于次要地位。同时,分析表明,铜芯越大(Ⅲ型)、聚乙烯厚度越小(Ⅰ型),热通量的比值会增大,从而增强向下小火焰的传热效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1