{"title":"Proactive Caching With Distributed Deep Reinforcement Learning in 6G Cloud-Edge Collaboration Computing","authors":"Changmao Wu;Zhengwei Xu;Xiaoming He;Qi Lou;Yuanyuan Xia;Shuman Huang","doi":"10.1109/TPDS.2024.3406027","DOIUrl":null,"url":null,"abstract":"Proactive caching in 6G cloud-edge collaboration scenarios, intelligently and periodically updating the cached contents, can either alleviate the traffic congestion of backhaul link and edge cooperative link or bring multimedia services to mobile users. To further improve the network performance of 6G cloud-edge, we consider the issue of multi-objective joint optimization, i.e., maximizing edge hit ratio while minimizing content access latency and traffic cost. To solve this complex problem, we focus on the distributed deep reinforcement learning (DRL)-based method for proactive caching, including content prediction and content decision-making. Specifically, since the prior information of user requests is seldom available practically in the current time period, a novel method named temporal convolution sequence network (TCSN) based on the temporal convolution network (TCN) and attention model is used to improve the accuracy of content prediction. Furthermore, according to the value of content prediction, the distributional deep Q network (DDQN) seeks to build a distribution model on returns to optimize the policy of content decision-making. The generative adversarial network (GAN) is adapted in a distributed fashion, emphasizing learning the data distribution and generating compelling data across multiple nodes. In addition, the prioritized experience replay (PER) is helpful to learn from the most \n<italic>effective</i>\n sample. So we propose a multivariate fusion algorithm called PG-DDQN. Finally, faced with such a complex scenario, a distributed learning architecture, i.e., multi-agent learning architecture is efficiently used to learn DRL-based methods in a manner of centralized training and distributed inference. The experiments prove that our proposal achieves satisfactory performance in terms of edge hit ratio, traffic cost and content access latency.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 8","pages":"1387-1399"},"PeriodicalIF":5.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10540320/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Proactive caching in 6G cloud-edge collaboration scenarios, intelligently and periodically updating the cached contents, can either alleviate the traffic congestion of backhaul link and edge cooperative link or bring multimedia services to mobile users. To further improve the network performance of 6G cloud-edge, we consider the issue of multi-objective joint optimization, i.e., maximizing edge hit ratio while minimizing content access latency and traffic cost. To solve this complex problem, we focus on the distributed deep reinforcement learning (DRL)-based method for proactive caching, including content prediction and content decision-making. Specifically, since the prior information of user requests is seldom available practically in the current time period, a novel method named temporal convolution sequence network (TCSN) based on the temporal convolution network (TCN) and attention model is used to improve the accuracy of content prediction. Furthermore, according to the value of content prediction, the distributional deep Q network (DDQN) seeks to build a distribution model on returns to optimize the policy of content decision-making. The generative adversarial network (GAN) is adapted in a distributed fashion, emphasizing learning the data distribution and generating compelling data across multiple nodes. In addition, the prioritized experience replay (PER) is helpful to learn from the most
effective
sample. So we propose a multivariate fusion algorithm called PG-DDQN. Finally, faced with such a complex scenario, a distributed learning architecture, i.e., multi-agent learning architecture is efficiently used to learn DRL-based methods in a manner of centralized training and distributed inference. The experiments prove that our proposal achieves satisfactory performance in terms of edge hit ratio, traffic cost and content access latency.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.