{"title":"Expansion of Self-assembled Structures of Heteroarray NdFeB Semicircular Arc Magnetic Minirobots","authors":"Wenguang Yang, Huibin Liu, Qinghao Guo, Wenhao Wang, Haibo Yu, Anqin Liu","doi":"10.1007/s42235-024-00544-0","DOIUrl":null,"url":null,"abstract":"<div><p>Researching the cooperative operation and functional expansion of multiple minirobot assemblies has the potential to bring about significant advancements in the practical applications of minirobots. In this study, we present a novel assembly system comprised of arc-shaped NdFeB magnetic minirobots. These minirobots can be individually utilized as assembly units, allowing for function expansion and comprehensive capability enhancement. We fabricate four Semicircular Arc Magnetic Minirobots (SAMM) arranged in different configurations and analyze their force and motion characteristics. Furthermore, by using this unit as a base, various expansion structures such as latches, petals, and rings can be assembled through reasonable combinations. We define the comprehensive reinforcement interval by comparatively analyzing changes in the unit’s motion characteristics and operational capabilities. Precise motion manipulation is employed to verify the rationality of the basic unit structure and the feasibility of the assembly scheme. Our proposed self-assembly scheme for magnetic minirobots exhibits great potential and may be used as a paradigm for future research on expanding the functionality of minirobots.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2258 - 2270"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00544-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researching the cooperative operation and functional expansion of multiple minirobot assemblies has the potential to bring about significant advancements in the practical applications of minirobots. In this study, we present a novel assembly system comprised of arc-shaped NdFeB magnetic minirobots. These minirobots can be individually utilized as assembly units, allowing for function expansion and comprehensive capability enhancement. We fabricate four Semicircular Arc Magnetic Minirobots (SAMM) arranged in different configurations and analyze their force and motion characteristics. Furthermore, by using this unit as a base, various expansion structures such as latches, petals, and rings can be assembled through reasonable combinations. We define the comprehensive reinforcement interval by comparatively analyzing changes in the unit’s motion characteristics and operational capabilities. Precise motion manipulation is employed to verify the rationality of the basic unit structure and the feasibility of the assembly scheme. Our proposed self-assembly scheme for magnetic minirobots exhibits great potential and may be used as a paradigm for future research on expanding the functionality of minirobots.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.