Hong Li, Gülin Demirok, Semin Atilgan, Sandeep Vennam, Thibault Charpentier
{"title":"High-modulus glass fiber for wind renewable energy generation: Selective review on the recent research and development","authors":"Hong Li, Gülin Demirok, Semin Atilgan, Sandeep Vennam, Thibault Charpentier","doi":"10.1111/ijag.16672","DOIUrl":null,"url":null,"abstract":"<p>To effectively manage turbine blade weight and blade deflection under severe weather conditions, longer and stiffer blades are required, fiber glass producers have devoted significant efforts to developing and commercializing high-modulus (HM) glass fiber products of the first generation. The current focuses aim at the commercialization of the second generation and the development of the third-generation products. This article briefly reviews four key areas: (a) the benefit of longer blades on wind energy generation, (b) characteristics of HM glass fibers of various generations, (c) fundamental science and understanding behind HM glass fiber development, and (d) finally statistically based composition (C)–property (P) and structure (S)–property (P) modeling approaches in new glass design.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 4","pages":"367-380"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16672","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
To effectively manage turbine blade weight and blade deflection under severe weather conditions, longer and stiffer blades are required, fiber glass producers have devoted significant efforts to developing and commercializing high-modulus (HM) glass fiber products of the first generation. The current focuses aim at the commercialization of the second generation and the development of the third-generation products. This article briefly reviews four key areas: (a) the benefit of longer blades on wind energy generation, (b) characteristics of HM glass fibers of various generations, (c) fundamental science and understanding behind HM glass fiber development, and (d) finally statistically based composition (C)–property (P) and structure (S)–property (P) modeling approaches in new glass design.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.